codeforce 369E 离线树状数组+左端点排序右端点维护 一维下 求点集覆盖线段数量

题目链接:http://codeforces.com/problemset/problem/369/E

题意:

在一维的x轴上

给定n个线段, m个询问

每个询问 cut个点, 问该点集覆盖的线段数量

 

思路:

ans[i] 表示 第 i 个询问的答案,设 ans[i] = n, 再减去 不在点集中的线段

对于第i个询问,预处理出不在 {点集内的线段} ,

如第2个询问的点集是{4,5},

则预处理出线段{ [1,3], [6,inf] }

则对于第2个答案 ans = n - |{所有包含于 { [1,3], [6,inf] }这个线段点集}|

树状数组中存的是输入的线段。

sum(x) = 求和[1,x];

add(x) = [x,inf]++;


附:预处理排序后的结果图,p为0表示输入的线段,p>0表示第p个询问处理出的线段

 

 

#include <cstdio>
#include <algorithm>
#include <iostream>
#include <string.h>
using namespace std;
#define N 1000005
#define inf N-1
int c[N], maxn;
inline int lowbit(int x){return x&(-x);}
void add(int pos, int val){while(pos<=maxn)c[pos]+=val,pos+=lowbit(pos);}
int sum(int pos){int ans = 0;while(pos)ans+=c[pos],pos-=lowbit(pos);return ans;}

struct node{
	int l,r,id;
	bool operator<(const node&a)const{
		return a.l<l||a.l==l&&a.r>r||a.l==l&&a.r==r&&a.id>id;
	}
	node(int a=0,int b=0,int c=0):l(a),r(b),id(c){}
}a[N];
int ans[N];//处理出不在{点集内的线段},则ans = n - 输入中所有包含于{点集内的线段}
int main(){
	int n,m,i,j;
	maxn = inf;
	while(~scanf("%d%d",&n,&m)){
		for(i=1;i<=n;i++)scanf("%d %d",&a[i].l,&a[i].r),a[i].id = 0;
		int top = n, x;
		for(i=1;i<=m;i++)
		{
			scanf("%d %d",&j,&x);
			if(x>1)a[++top] = node(1,x-1,i);
			while(--j){
				int now; scanf("%d",&now);
				if(x+1<=now-1)a[++top] = node(x+1,now-1,i);
				x = now;
			}
			if(x+1<=maxn-1)a[++top] = node(x+1,maxn-1,i);
		}
		for(i=1;i<=m;i++)ans[i] = n;
		memset(c, 0, sizeof c);
		sort(a+1,a+top+1);
		for(i=1;i<=top;i++)
			if(a[i].id)ans[a[i].id] -= sum(a[i].r);
			else add(a[i].r,1);

		for(i=1;i<=m;i++)printf("%d\n",ans[i]);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值