ZOJ 3717 2-sat 进位精度

题意:

在三维空间中

给定n组,每组2个三维坐标 表示n组气球的中心坐标

问:

在每组中选取一个坐标,使得选出的n个坐标 有最大的半径(气球不能相交)

问最大的半径是多少

思路:

二分半径,2-sat判可行解

因为这不能四舍五入,所以最后要去掉误差后面的小数,然后暴力求解

 

 

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<queue>
using namespace std;
#define hash Hash
#define N 1000
#define M 400000+5
#define eps 1e-6
//注意n是拆点后的大小 即 n <<= 1 N为点数(注意要翻倍) M为边数
#define max(a,b) (a>b?a:b)
struct Edge{
	int to, nex;
}edge[M];

int head[N], edgenum;
void addedge(int u, int v){
	Edge E = {v, head[u]};
	edge[edgenum] = E;
	head[u] = edgenum ++;
}

bool mark[N];
int Stack[N], top;
void init(){
	memset(head, -1, sizeof(head)); edgenum = 0;
	memset(mark, 0, sizeof(mark));
}

bool dfs(int x){
	if(mark[x^1])return false;//一定是拆点的点先判断
	if(mark[x])return true;

	mark[x] = true;
	Stack[top++] = x;

	for(int i = head[x]; i != -1; i = edge[i].nex)
		if(!dfs(edge[i].to)) return false;

	return true;
}

bool solve(int n){
	for(int i = 0; i < n; i+=2)
		if(!mark[i] && !mark[i^1])
		{
			top = 0;
			if(!dfs(i))
			{
				while( top ) mark[ Stack[--top] ] = false;
				if(!dfs(i^1)) return false;
			}
		}
	return true;
}

struct node{
	double x,y,z;
}p[N][2];
double dist(node a,node b){
	return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)+(a.z-b.z)*(a.z-b.z));
}
double dis[N][2][N][2];
int hash(int i, int j, bool x){
	return (i*2+j)*2+1-x;
}
bool ok(double r, int n){
	init();
	int i, j, k, z;
	for(i = 0; i < n; i++)
		for(j = 0; j < 2; j++)
		{
			addedge(hash(i,j,true),hash(i,j^1,false));
			addedge(hash(i,j,false),hash(i,j^1,true));
		}
	for(i = 0; i < n; i++)
		for(j = 0; j < 2; j++)
			for(k = 0; k < n; k++)if(i!=k)
				for(z = 0; z < 2; z++)
					if(dis[i][j][k][z] < r)
					{
						addedge(hash(i,j,true),hash(k,z,false));
					}
	return solve(n<<2);
}
int main(){
	int i, j, n;
	while(~scanf("%d",&n)){
		for(i = 0; i < n; i++)
			for(j = 0; j < 2; j++)
			scanf("%lf %lf %lf",&p[i][j].x,&p[i][j].y,&p[i][j].z);
		for(i = 0; i < n; i++)
			for(j = 0; j < 2; j++)
				for(int k = 0; k < n; k++)
					for(int z = 0; z < 2; z++)
						dis[i][j][k][z] = dist(p[i][j],p[k][z])/2.0;

		double ans = 0, l = 0, r = 100000000;
		while(l+eps<r){
			double mid = (l+r)/2;
			if(ok(mid,n))
				l = ans = mid;
			else r = mid;
		}
		ans *= 1000.0; ans = floor(ans);	ans/=1000.0;
		while(!ok(ans,n))ans-=0.001;
		while(ok(ans+0.001,n))ans+=0.001;
		printf("%.3lf\n", ans);
	}
	return 0;
}
/*
2
1 1 1 5 5 5
1 1 1 5 5 5

*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值