二分图的定义就是把一个图中的顶点划分为两个不相交集U和V,使得每一条边都分别连接U、V
中的顶点,这样的图称为二分图。二分图是不含有 含奇数条边的环 的图。
判定一个图是不是二分图的方法可以染色。
我们先给节点1染成白色,然后所有与1相连的结点染成黑色,然后对于黑色的结点,所有相邻的结点若未染过色,就染成白色,否则若染过色且与父节点颜色相同,那么此图不是一个二分图,否则继续染色知道所有顶点全部染了。
注意判定的时候题目可能给的不止一个连通图,要把所有顶点全都枚举一遍。
#pragma warning(disable:4996)
#include <cstdio>
#include <queue>
#include <vector>
#include <cstring>
using namespace std;
const int N = 10005;
const int M = 40005;
vector<int>g[N];
char vis[N];
bool ans;
void add(int u, int v){
g[u].push_back(v);
}
inline bool bfs(int u){
queue<int>q;
q.push(u);
vis[u] = 'W';
while (!q.empty()){
u = q.front(); q.pop();
for (int i = 0; i < g[u].size(); i++){
int v = g[u][i];
if (vis[v] == 0){
vis[v] = vis[u] == 'W' ? 'B' : 'W';
q.push(v);
}
else if (vis[v] == vis[u]){
return false;
}
}
}
return true;
}
int main(){
int t; scanf("%d", &t);
while (t--){
memset(vis, 0, sizeof vis);
for (int i = 0; i < N; i++)g[i].clear();
ans = true;
int n, m; scanf("%d %d", &n, &m);
for (int i = 1; i <= m; i++){
int u, v; scanf("%d %d", &u, &v);
add(u, v);
add(v, u);
}
int i;
for (i = 1; i <= n; i++){
if (!vis[i]){
if (!bfs(i)){
ans = false;
break;
}
}
}
if (ans)printf("Correct\n");
else printf("Wrong\n");
}
return 0;
}