HDU 4596 Yet another end of the world(一阶不定方程是否可解,gcd)

题目让求是否有一组解(n,m)满足方程 n*x1+k1=m*x2+k2,,y1<=k1<=z1,y2<=k2<=z2。

移项后变成:n*x1- m*x2=k2-k1,,y2-z1<=k2-k1<=z2-y1。

也就是:n*x1- m*x2=c,,y2-z1<=c<=z2-y1。

我们知道对于一阶不定方程a*n+b*m=gcd(a,b)肯定存在一组整数解。

那么我们就可以看一下gcd(x1,x2)或者gcd(x1,x2)的整数倍是否在区间[y2-z1,z2-y1]中就可以找到是否可解了。

具体做的时候我们可以把存在负区间的区间转化为全为正的区间,然后判断是否包含gcd的正整数倍就OK了。

#pragma warning(disable:4996)
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = 1005;
int x[N], y[N], z[N];

int gcd(int a, int b){
	if (b == 0)return a;
	return gcd(b, a%b);
}

int main(){
	int n;
	while (~scanf("%d", &n)){
		for (int i = 1; i <= n; i++){
			scanf("%d %d %d", x + i, y + i, z + i);
		}

		bool flag = true;
		for (int i = 1; i < n; i++){
			for (int j = i + 1; j <= n; j++){
				int g = gcd(x[i], x[j]);
				int l = y[j] - z[i], r = z[j] - y[i];
				//转化区间
				if (r <= 0){
					swap(l, r);
					l = -l; r = -r;
				}
				else if (l < 0){
					l = -l;
					r = max(l, r);
					l = 0;
				}
				//查看是否包含有正整数倍的gcd
				int mul1 = l / g;
				if (l%g != 0)mul1++;
				int mul2 = r / g;
				if (mul1 <= mul2){
					flag = false;
					break;
				}
			}
			if (!flag)break;
		}

		if (flag)puts("Can Take off");
		else puts("Cannot Take off");

	}
	return 0;
}


springboot100基于Springboot+Vue精准扶贫管理系统-毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值