- 博客(553)
- 资源 (3)
- 问答 (1)
- 收藏
- 关注

原创 一文搞懂:如何在深度学习中使用GPU和cuda加速
接下来,我们使用 x.tolist() 方法将 x 转换为Python列表并将其添加到 result 中,或者使用 x.cpu().numpy() 方法将 x 转换为CPU上的NumPy数组,然后将该数组添加到 result 中。不是的,len(Xdata)并不在GPU上。要在GPU上创建一个列表,并将张量对象添加到该列表中,可以使用PyTorch的torch.Tensor.tolist()方法或者torch.Tensor.cpu().numpy()方法先将张量转换为NumPy数组,再将数组添加到列表中。
2023-12-02 10:17:42
9331
2

原创 菜鸟学Java public static void main(String[] args) 是什么意思?
包名的层数没有硬性的限制要求,你可以根据需要组织包的层次结构。一般来说,官方网站或文档会提供相应的版本兼容性信息,你可以参考这些信息选择适合你的项目的版本。而对于第三方库和框架包,你需要下载相应的库文件,并在项目中进行配置和引用,以便使用其功能。方法中使用其他类型的参数,你可以将命令行传入的字符串参数解析为你需要的类型。),包含了方法要执行的代码块。在这个例子中,方法体内部没有给出具体的代码,你可以在这个代码块中添加你要执行的操作。对于包的层数并没有硬性的限制要求,你可以根据自己的需要来组织包的层次结构。
2023-06-25 17:16:31
29847
7

原创 联邦学习算法介绍-FedAvg详细案例-Python代码获取
在DP-FedSGD中,被选中的参与方使用全局模型参数对局部模型进行初始化,通过批梯度下降法进行多轮梯度下降,计算梯度更新量。而在DP-FedAVG中,是利用一个批次的数据进行一次梯度下降,计算梯度更新量。由服务端收集各客户端的梯度信息,通过聚合计算后再分发给各客户端,从而实现多个客户端联合训练模型,且“原始数据不出岛”,从而保护了客户端数据隐私。假设中心方是好奇的,那么客户端通过某种规则向其他客户端广播梯度信息,收到梯度信息的客户端聚合参数并训练,将新的梯度信息广播。面向神经网络模型, 假设网络总共有。
2023-03-12 10:36:34
26484
192

原创 知识图谱-命名实体-关系-免费标注工具-快速打标签-Python3
你好!这是一款实体关系联合标注的本地小程序,以Python3Python3Python3实现。本系统是一种标注文本语料中命名实体与关系或属性的半自动化软件系统,应用PythonPythonPython编程实现可视化界面和主要功能,利用HTMLHTMLHTML和CSSCSSCSS提示标注教程与规范(无需关心它们如何实现)。利用本系统进行文本标注将原始段落文本更新为带有事先定义的命名实体、关系或属性的文本标签数据。
2022-10-31 15:44:50
8805
102

原创 python爬虫技术实例详解及数据可视化库
前言在当前数据爆发的时代,数据分析行业势头强劲,越来越多的人涉足数据分析领域。面对大量数据,人工获取信息的成本高、耗时长、效率低,是否能用代码去完成大量复杂的工作,从而从网络上获取到目标信息?由此,网络爬虫技术应运而生。网络爬虫简介网络爬虫(web crawler,又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种用来自动浏览万维网的程序或者脚本。爬虫可以验证...
2020-02-24 11:58:56
7943
8
原创 迁移框架下的期望分位数回归的纠偏
模块核心作用数学体现领域差异隔离分离源域迁移与目标域适应,避免分布差异污染δ\deltaδ仅优化目标域数据(公式 2.20)噪声偏差修正用目标域无噪数据抵消隐私噪声的影响损失函数展开中的线性项(公式 2.21)局部特征适应使参数更贴合目标域的条件分位数特性(如偏态尾部分布)ρτ\rho_\tauρτ对残差的非对称加权稀疏性保持通过 Lasso 控制增量δ\deltaδ的复杂度,避免纠偏破坏特征选择λδ∣δ∣1λδ∣δ∣1纠偏本质是两阶段估计的贝叶斯思想。
2025-08-18 13:46:03
382
原创 期望分位数回归的迁移学习
在迁移学习框架中,源域的选择确实基于其参数与目标域参数的相似性,具体通过 L1 范数距离(∥β−β(k)∥1\left\| \beta - \beta^{(k)} \right\|_1β−β(k)1)是否小于阈值 hhh 来判定。以下是核心逻辑的详细解释:β(0)−β(k)1≤h其中 hhh 是预设的阈值。满足该条件的源域称为 hhh-可迁移源域,纳入信息集 A\mathcal{A}A。几何意义:这等价于以目标域参数 β(0)\beta^{(0)}β(0) 为中心、hhh 为半径的 L1
2025-08-18 13:35:58
256
原创 Oracle algorithm的含义
在统计学领域,“Oracle algorithm”并非指代具体的数据库产品(如Oracle公司开发的数据库系统),而是指一类,其核心特性是。该术语在理论证明和算法评估中扮演重要角色,尤其在迁移学习、高维统计和模型选择等场景下常见。
2025-08-17 22:48:26
276
原创 损失函数的多元泰勒展开
多元泰勒展开的核心思想是利用多项式函数逼近多元函数在某点附近的局部行为。对于期望分位数回归损失函数 $\rho_{\tau}(y_i - x_i^{\top}\beta)$,在 $\beta=0$ 处的展开可表示为: $$ \rho_{\tau}(y_i - x_i^{\top}\beta) = \sum_{j=0}^{\infty} \sum_{\phi \in \Phi_j} \lambda_{\phi v_i} \phi(\beta) $$ 其中: 基函数 $\phi(\beta)=\beta_1^{
2025-08-17 21:53:52
823
原创 期望分位数回归模型
SIC 是一个评价模型好坏的标准。它说:“一个好的模型,既要能很好地拟合数据(块(e)小),又不能太复杂(块(f)小)”。记住,模型是工具,理解每个部分的目的才能用好它。论文采用了Hu et al. (2015)和Liu et al. (2020)的思路,使用基于。今天我们深入讲解带约束的惩罚期望分位数回归模型以及如何选择它的关键参数。这些公式看起来有点复杂,但别担心,我们会一步步拆解,理解每个部分的含义和作用。受到L1惩罚项的调节(控制复杂度,选择特征),期望分位数损失(聚焦于数据分布的特定位置),
2025-08-17 17:13:36
753
原创 广义矩估计随机近似中1.2和2.1的差异
—它证明:通过精心设计的样本分割和冻结策略,流式算法也能达到离线GMM的统计效率极限。1.2节的S2SLS和2.1节的SGMM虽然公式相似,但存在。1.2和2.1的差异。
2025-08-14 22:17:29
935
原创 广义矩估计随机近似中公式(2d)的推导
摘要: GMM估计中权重矩阵的最优性条件要求使用矩条件协方差矩阵的逆(Ω⁻¹)。在线性工具变量回归中,若满足同方差假设,最优权重矩阵可简化为工具变量协方差矩阵的逆(Q⁻¹)。在线算法选择Q⁻¹而非Ω⁻¹,主要基于计算可行性:Q⁻¹可直接通过Sherman-Morrison-Woodbury(SMW)公式在线高效更新(复杂度O(d²)),而Ω⁻¹需已知残差参数导致循环依赖。SGMM通过两阶段权衡实现一致性,第一阶段用Q⁻¹估计初始参数,第二阶段可周期性重构Ω⁻¹提升效率。SMW公式将矩阵求逆转化为标量运算,通
2025-08-14 15:57:42
818
原创 Polyak-Ruppert 平均
(如 SGD)设计的平均技术,由 Boris Polyak(1990)和 David Ruppert(1988)独立提出。它不仅仅是简单的算术平均,而是一种具有。:Polyak-Ruppert 平均是流数据处理的“精装修版”递归平均——它在普通平均的框架上,加装了。当你的目标是高精度在线估计时,指名调用它就是获得统计效率保证的密钥。:Polyak 平均的“特殊之处”不在计算公式,而在其。生成的序列(如 SGD 参数、MCMC 样本)。——它针对的是 SGD 的迭代序列。
2025-08-14 11:08:08
920
原创 广义矩估计的随机近似下的递归平均
流式递归平均:通用高效的在线统计算法 公式 (2b) 和 (2e) 采用流式递归平均方法,是处理流数据的核心算法。其核心思想是通过加权融合新数据与历史均值,实现无需存储全部数据的高效计算。 关键优势: 内存高效(O(1)空间复杂度) 在线更新(O(1)时间复杂度/样本) 保持统计性质(无偏性、强一致性) 应用场景: 任何可加统计量(均值、方差、协方差等) 实时系统(传感器、金融数据流等) 该方法是流数据计算的通用范式,在SGMM中用于保证雅可比矩阵估计和参数估计的统计有效性。
2025-08-14 10:54:39
887
原创 广义矩估计的随机近似中的一个推导
牛顿步长在广义矩估计(GMM)中的推导基于目标函数的局部二次近似。通过泰勒展开,将梯度与海森矩阵代入求解极小值点,得到更新公式:β^(k+1)=β^(k)-(G_n'W G_n)^(-1)G_n'W \bar{g}_n(β^(k))。这一方法不仅能自适应调整步长,在线性GMM中更等价于一步估计量。在在线学习场景下,通过样本替代和历史平均,实现了高效的随机牛顿步长更新,兼具优化效率与统计有效性。
2025-08-14 10:44:23
1005
原创 IV模型(工具变量模型)
将传统IV估计扩展至大规模流数据场景,在保持渐近性质的同时显著提升计算效率。理解这一模型对掌握现代高维计量方法至关重要。,其核心是通过工具变量剥离解释变量与误差项的相关性。本文提出的SGMM算法,通过。工具变量通过“出生季度→教育年限→收入”的间接路径,剥离内生性干扰。论文针对传统GMM的瓶颈(需全样本计算),提出。),则最小二乘法(OLS)估计量。为权重矩阵(如最优权重。IV模型是解决内生性问题的。
2025-08-13 17:00:55
564
原创 汉森(1982)提出的广义矩估计法
摘要:汉森(1982)提出的广义矩估计法(GMM)是计量经济学中重要的参数估计方法。该方法通过使样本矩接近理论矩来估计参数,适用于过度识别情形。GMM估计具有一致性、渐进正态性和有效性特点,广泛应用于工具变量回归、资产定价模型等领域。与传统GMM相比,随机GMM(SGMM)实现了在线流式处理、更低内存需求和更快计算速度,同时保持相同的渐进性质。模拟结果显示SGMM在保持估计精度的同时显著提升了计算效率。
2025-08-11 14:28:45
719
原创 将文件移入回收站而不是直接删除
选项被默认选中且呈灰色无法修改,可能是由于系统策略限制、权限问题或注册表被锁定。新配置的电脑,删除的文件夹,没有在回收站里面,而是错误的直接删除了,这显然不符合我的要求,如何解决?完成修改后,重启电脑并测试删除文件是否正常进入回收站。Windows 组件。
2025-07-25 19:21:33
377
原创 Matplotlib 中调整 坐标轴和刻度线粗细
Matplotlib坐标轴样式调整指南 本文介绍了Matplotlib中调整坐标轴刻度和轴线样式的多种方法。对于刻度线调整,推荐使用tick_params()函数,可单独控制主次刻度的宽度、长度和颜色,支持面向对象和全局配置方式。轴线粗细可通过spines对象设置,支持单独调整各边轴线和隐藏特定轴线。两种调整都提供了全局默认设置选项(rcParams)。完整示例演示了如何组合使用这些方法,包括启用次刻度、设置网格线等注意事项。建议将刻度线和轴线宽度设为1.5-3磅,使用深色以确保打印清晰度。这些方法使科研图
2025-07-17 13:03:33
472
原创 Matplotlib 轴标题与刻度字号调整方法
Matplotlib 轴标题与刻度字号调整方法摘要 轴标题调整 xlabel()/ylabel():直接设置字号(fontsize=14) rcParams全局设置:plt.rcParams['axes.labelsize'] = 14 面向对象方式:通过ax.set_xlabel(fontsize=14) 刻度字号调整 tick_params():plt.tick_params(axis='both', labelsize=14) 单独设置:plt.xticks(fontsize=14) 全局设置:修改p
2025-07-17 10:36:26
305
原创 linux wsl2 docker 镜像复用快速方法
摘要:要将单个b.py文件集成到现有A项目的开发环境中,推荐使用Docker方式。方法一:通过Docker命令行构建镜像并运行容器执行b.py;方法二(推荐):在VS Code中创建.devcontainer配置,复用A项目的Docker环境;方法三:启动交互式容器直接开发。关键配置包括路径映射、工作目录设置和GPU支持。验证成功后可看到JAX正确识别GPU设备。建议创建可重用模板项目,方便后续开发复用环境配置。(150字)
2025-07-08 20:23:31
511
原创 latex Beamer中图片、表格设置显示序号
摘要:在Beamer的Boadilla主题中实现表格自动编号有两种方法:1) 在导言区添加\setbeamertemplate{caption}[numbered]启用全局编号;2) 自定义标题格式如\setbeamertemplate{caption label}{\inserttablenumber. }修改编号样式。两种方式均可将默认"Table:"格式转为"Table 1:"的自动编号效果,需注意加载booktabs包支持三线表格式,并通过\ref{}正确引用
2025-07-04 14:11:35
80
原创 latex中使用定义定理推论等独立编号且节号可选
LaTeX中实现环境独立编号的解决方案:通过创建新环境并重定义标准环境,实现定理、定义和推论的独立编号。关键步骤包括:1)使用\newtheorem创建独立计数环境;2)通过\renewenvironment保持原有环境名称;3)保留加粗标题样式。如需去除节号前缀(如1.1变为1),只需移除[section]参数。该方案兼容现有文档结构,保持Beamer主题集成,同时提供灵活的自定义选项(如编号格式、颜色设置等)。使用示例证明该方法能有效实现各环境的独立连续编号,同时维护文档一致性。
2025-07-04 10:58:01
130
原创 取消latex Beamer 中,右下角的导航按钮
移除 Beamer 右下角导航按钮的方法: 推荐方案:在导言区添加\setbeamertemplate{navigation symbols}{}可完全清除所有导航按钮; 选择性移除:通过自定义navigation symbols保留指定按钮; 主题调整:改用default等简洁主题,或通过\setbeamertemplate{footline}{}隐藏整个页脚。注意代码需置于主题声明后,部分主题可能需额外适配。方法1最简洁高效,适合大多数场景。 (摘要字数:98字)
2025-07-03 19:03:06
83
原创 latex Beamer 的主题(如 Boadilla)没有定理编号的解决方案
摘要:修改 Beamer 中 theorem 环境以显示编号时,原有样式可能消失。通过调整 theorem begin 模板,保留主题的方框、背景色等装饰,同时强制显示编号。解决方案为使用 block 环境并插入 \inserttheoremnumber,确保视觉风格一致。需注意不同主题的样式差异,并按需设置编号格式。修改后定理标题将显示为"Theorem 1",且保留原有主题设计。
2025-07-03 18:47:15
49
原创 git rebase多次触发冲突
摘要:本文记录了Git rebase操作中出现的合并冲突问题及解决方法。在将本地分支rebase到upstream/main分支时,CONTRIBUTING.md文件出现内容冲突。分析显示,多个提交修改了同一文件导致连续冲突。解决方案包括:1)手动编辑冲突文件,保留/合并所需内容;2)用git add标记冲突解决;3)继续rebase流程。若冲突过多,可选择跳过(--skip)或终止(--abort)rebase。建议通过合并提交、使用git pull --rebase和拆分大改动来预防类似问题。关键点在于
2025-07-03 17:57:07
1137
原创 git 中删除提交历史
摘要: 本文针对删除Git存储中的绿色分支(stash@{0} WIP on main: bc30916 fix(A-test): none)提供两种方案: 仅删除stash记录:通过git stash drop stash@{0}安全移除,不影响提交历史,适用于清理临时工作内容。 彻底删除提交历史:使用git rebase -i交互式变基删除bc30916提交,需谨慎操作并协调团队。 关键区别:前者仅清理存储栈,后者重写历史。操作前建议备份未提交内容,删除后不可恢复。
2025-07-03 17:33:47
268
原创 【SSH 密钥未正确设置】Permission denied (publickey). fatal: Could not read from remote repository.
你的问题核心是。
2025-07-03 09:54:38
924
原创 WSL+Docker 复用镜像方法
复用现有开发环境镜像快速创建隔离项目环境 通过复用现有配置完善的开发环境镜像,可以快速为新项目创建隔离开发环境,避免重复下载依赖。核心步骤包括:1)创建项目骨架;2)配置.devcontainer文件指向现有镜像;3)启动容器开发环境。该方法具有三大优势:零重复下载(直接复用现有镜像)、环境一致性(共享基础环境)和项目隔离(独立挂载卷)。实测可将新项目环境搭建时间从45分钟降至28秒。关键技巧包括动态挂载路径、继承环境变量和按需扩展依赖,同时提供了多项目管理策略和常见问题解决方案。
2025-07-02 23:33:20
1099
原创 -uid 镜像选择
摘要:镜像列表显示两个20.5GB的VSCode开发容器镜像,其中带-uid后缀的是适配用户权限的特殊镜像,建议开发时优先使用。该镜像会自动匹配宿主机用户权限,解决容器内外文件权限冲突问题。基础镜像(无后缀)适合纯运行环境,而-uid镜像支持无缝文件编辑,是VSCode开发的最佳实践。使用前可通过whoami命令验证用户权限配置,并在devcontainer.json中指定-uid镜像以确保开发体验。(149字)
2025-07-02 23:30:55
341
原创 WSL2 + Docker Desktop 环境中查看本地镜像
在 WSL2 + Docker Desktop 环境中查看本地镜像的方法总结: 使用 docker images 或 docker image ls 查看全部镜像; 通过 --filter 参数过滤镜像,或 -q 仅显示镜像ID; 在 Docker Desktop 图形界面中查看; 使用 docker inspect 查看镜像详情或 docker history 分析分层结构; 镜像存储在 WSL2 的 /var/lib/docker 路径下。 常用参数包括 -a(显示所有层)、--no-trunc(完整I
2025-07-02 23:28:59
371
原创 新版本没有docker-desktop-data分发 | docker desktop 镜像迁移
在新版本的docker desktop中(如4.21版本),镜像迁移只需要更改路径即可。打开docker desktop的设置(图1),将图2的原来的地址。修改为你想要的空文件夹即可,如“
2025-07-02 22:27:28
775
原创 Linux 系统中常用的文件和文件夹管理命令 and 常用快捷键
本文总结了Linux系统中常用的文件和目录管理命令,分为目录操作、文件操作、文件内容操作、权限与属性、查找与压缩、磁盘与空间六大类。每个命令均配有作用说明和示例,如mkdir创建目录、grep文本搜索、chmod修改权限等。此外还提供了实用快捷键指南,如Ctrl+C终止命令、!!重复上条命令等。掌握这些命令和快捷键可以显著提升Linux环境下的工作效率,建议结合man手册深入学习具体用法。
2025-07-02 19:24:01
907
原创 Docker Desktop导致存储空间不足时的解决方案
摘要:Docker Desktop默认安装在C盘时,可通过多种方式修改安装位置或镜像存储路径。主要方法包括:重装时指定安装目录、使用软链接迁移安装目录、通过WSL导出/导入迁移镜像数据、修改Docker设置中的磁盘位置等。其中WSL导出/导入是最推荐的官方解决方案。操作前需备份数据,确保目标盘空间充足,并需要管理员权限。还可配合定期清理无用镜像、监控磁盘使用等优化措施,有效解决C盘空间不足问题。(148字)
2025-07-02 19:09:35
806
原创 windows系统下将Docker Desktop安装到除了C盘的其它盘中
在Windows系统下安装Docker时默认会安装在C盘,但可通过命令行指定安装路径。本文提供了4种方法修改安装目录(如H:\Docker):推荐使用PowerShell的Start-Process命令,也可通过CMD执行或参数转义方式实现。注意事项包括:需提前创建目标文件夹、以管理员权限运行、检查安装程序版本。安装完成后需验证目标路径是否生成Docker相关文件。若失败建议卸载后重试。
2025-07-02 19:06:52
393
原创 样本方差是总体方差的无偏估计
在高斯-马尔可夫假设条件下,线性回归模型为YZβεYn×1Zn×r1rankZr1βr1×1εn×1Eε∣Z0Varε∣Zσ2Inσ2OLS 估计的残差向量为εY−Zβ,其中βZ′Z−1Z′Y。残差平方和为ε′εs2n−r−1ε′εn−r−1Y′I−HY其中HZZ′Z−1Z′是帽子矩阵(对称且幂等),且I−H也是对称且幂等。
2025-06-21 17:32:01
471
好好画词云图,完整项目数据和代码
2023-04-07
知识图谱-命名实体-关系-免费标注工具-快速打标签-Python3
2022-10-31
完全去中心化的学习(Fully Decentralized Learning)简要
2023-04-25
RFM客户分类模型方法
2023-04-25
with torch.no_grad()和model.eval()在干什么?
2023-04-24
和我一起学机器学习-K近邻法
2023-04-24
和我一起学机器学习-朴素贝叶斯法
2023-04-24
循环神经网络RNN--文本分类--完整代码免费下载
2023-04-24
文本卷积网络textCNN--文本分类--完整代码免费下载
2023-04-24
和我一起学机器学习-决策树
2023-04-24
和我一起学机器学习-逻辑斯蒂回归(Logistic Regression)
2023-04-24
freebase的entity id到真实数据的映射 数据集
2021-12-09
TA创建的收藏夹 TA关注的收藏夹
TA关注的人