python 获取指定日期时间(例如:昨天,前天,前5天的日期,后3天的日期)

本文介绍了一种使用Python来获取指定日期的方法,通过设置不同的偏移量可以轻松地获取过去或未来的日期。此外还介绍了如何利用strftime方法来自定义日期格式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

小知识,通过python获取指定日期的时间。可以利用偏移量这个小的知识点。

代码如下:

import datetime
// 获取当前时间
today = datetime.datetime.now()
// 计算偏移量
offset = datetime.timedelta(days=-2)
// 获取想要的日期的时间
re_date = (today + offset).strftime('%Y-%m-%d')

其中days = -2,可以根据需要进行替换,这样就可以得到不同需要的日期了。

另外:可以通过strftime方法,指定时间的输出格式。

除了以上输入的   %Y-%m-%d   格式,还可以采用以下的格式,进行限制

datetime.datetime.now().strftime('%F %T')
<think>好的,我现在需要帮助用户基于qlib编写Python代码实现特定的选股逻辑。首先,我需要明确用户的三个筛选条件:过滤名称包含&#39;ST&#39;的股票、筛选昨天涨停但今未涨停的股票,以及当股价低于35元。接下来,我得考虑如何利用qlib的结构来实现这些条件。 首先,qlib的数据结构是怎样的呢?用户提到引用[2]中提到了将股票数据导入qlib库,所以应该使用qlib的数据加载模块。可能需要用到D.features或类似的接口来获取数据。我需要导入必要的模块,比如qlib的init和data模块。 第一个条件是过滤名称包含&#39;ST&#39;的股票。在qlib中,股票的基本信息可能存储在Instrument模块中。可以通过Instruments类获取股票的名称,然后筛选掉名称中包含&#39;ST&#39;的股票。这部分可能需要用到正则表达式或者字符串操作。 第二个条件比较复杂:昨天涨停但今未涨停。涨停通常是指当日收盘价等于一日收盘价的110%(对于A股市场)。需要计算的收盘价,然后判断昨天是否涨停,同时今是否没有涨停。这里需要注意日期的处理,比如如何获取昨天的数据和今的数据。可能需要使用qlib的DataHandler或Dataset来获取历史数据,并进行比较。 第三个条件是当股价低于35元。这可能指的是最新的收盘价,或者当的某个价格。需要确认数据中的字段名称,比如收盘价可能用&#39;close&#39;表示。需要确保获取的是最新的股价数据,并进行筛选。 接下来,我需要考虑代码的结构。首先初始化qlib,设置数据路径。然后获取所有股票的列表,排除ST股票。接着,对于剩下的股票,逐个检查是否满足第二和第三个条件。可能需要遍历每个股票,获取其历史数据,计算涨停情况,并检查当股价。 关于涨停的判断,例如,昨天的涨停可以通过前天的收盘价乘以1.1(假设是主板股票,涨跌幅限制为10%)。然后检查昨天的收盘价是否等于涨停价,而今的收盘价是否低于今的涨停价(即今的收盘价是否低于昨天的收盘价乘以1.1)。但这里需要注意,如果市场有不同板块的涨跌幅限制不同,可能需要更复杂的处理,但用户可能只需要简单处理,所以先按10%计算。 另外,当股价可能需要使用最新的可用数据,比如最近交易日的收盘价。需要注意数据的时间戳,确保获取的是最新的数据。 可能遇到的难点是如何高效地处理多个股票的历史数据,避免逐条查询导致性能问题。可以考虑使用qlib的批量数据获取方法,或者利用表达式进行过滤。 最后,代码需要整合这些步骤,并返回符合条件的股票列表。可能需要处理异常情况,比如某些股票数据不足,或者名称获取失败的情况。 现在,我需要将这些思路转化为具体的Python代码,使用qlib的API,并确保符合用户的条件。同时,需要参考用户提供的引用,比如引用[2]中的示例,可能涉及D.instruments和D.features的使用。还要注意代码的效率和正确性,比如正确处理日期,避免off-by-one错误。</think>根据您的需求,基于qlib的股票筛选代码实现步骤如下: ### 实现步骤 1. **初始化qlib环境** ```python import qlib from qlib.data import D from qlib.constant import REG_CN qlib.init(provider_uri="~/.qlib/qlib_data/cn_data", region=REG_CN) ``` 2. **构建筛选条件** ```python from qlib.data.dataset import DatasetH from qlib.data.dataset.handler import DataHandlerLP import pandas as pd def stock_filter(): # 获取全市场股票列表 all_instruments = D.instruments(market=&#39;all&#39;) # 条件1:过滤ST股票 non_st = [inst for inst in all_instruments if &#39;ST&#39; not in inst.info()[&#39;display_name&#39;]] # 设置时间范围 end_date = pd.Timestamp.now().strftime("%Y-%m-%d") start_date = (pd.Timestamp.now() - pd.Timedelta(days=5)).strftime("%Y-%m-%d") # 创建数据集 dataset = DatasetH( handler=DataHandlerLP( instruments=non_st, start_time=start_date, end_time=end_date, infer_processors=[], learn_processors=[], data_loader={ &#39;class&#39;: &#39;QlibDataLoader&#39;, &#39;kwargs&#39;: { &#39;config&#39;: { &#39;feature&#39;: [&#39;$close&#39;, &#39;$upper_limit&#39;], &#39;label&#39;: None } } } ) ) # 获取数据 df = dataset.prepare().data # 条件2和3筛选 selected = [] for stock_id in df.index.unique(level=&#39;instrument&#39;): stock_data = df.loc[stock_id] if len(stock_data) < 2: continue # 获取最新两数据 yesterday = stock_data.iloc[-2] today = stock_data.iloc[-1] # 判断昨日涨停 yesterday_upper = yesterday[&#39;upper_limit&#39;] yesterday_close = yesterday[&#39;close&#39;] # 判断今日未涨停 today_close = today[&#39;close&#39;] today_upper = today[&#39;upper_limit&#39;] # 条件判断 if (yesterday_close >= yesterday_upper) and \ (today_close < today_upper) and \ (today_close < 35): selected.append(stock_id) return selected ``` ### 代码说明 1. **ST过滤**:通过`display_name`字段排除名称含ST的股票[^2] 2. **涨停判断**:使用`upper_limit`字段识别涨停价 3. **价格筛选**:直接比较收盘价`close`与阈值35元 4. **日期处理**:动态获取最近5数据确保包含两个交易日 ### 注意事项 1. 需要预先完成qlib数据入库[^3] 2. `upper_limit`字段需要数据源支持涨停价信息 3. 实际使用时需调整时间窗口长度(建议至少5日)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值