在当今竞争激烈的市场环境中,广告归因和广告效果监测成为了广告投放中至关重要的环节。通过深入了解广告归因和广告效果监测的方法,企业可以更好地评估广告投放的成效,并做出精确的决策,以提高广告效果和最大化投资回报。
本文将带您探索广告归因和广告效果监测的原理和方法,学会更精细地评估广告投放效果。
广告归因
广告归因是广告效果评估的基础,是指在广告行为链路中,识别广告的关键行为到底是由哪个广告或者渠道带来的一套逻辑和规则。
举个例子,某新游戏分别在抖音、微信、微博投放了广告,用户A在这3个平台都刷到了这款新游戏的广告,最后,用户A下载了这款游戏,并激活安装。
问题:用户A的这个转化,到底是“归功”于哪个平台呢?
广告归因,实际要解决的就是广告效果的“功劳”归属于谁的问题。这是效果广告不可或缺的一部分。
广告归因的意义和价值?
对于广告主:可以清晰了解不同平台的广告投放效果,为后续的预算分配、出价调整、素材优化等作充分的参考。
对于广告平台:“功劳”的归属直接决定了平台的收益;同时,也有助于广告运营了解不同素材或文案的投放效果,从而调整投放策略。
此外,归因数据也可以为归因模型的迭代提供重要的参考依据,促使广告效果趋于“公平”、“合理”地分配“功劳”。
广告归因的方法?
要了解广告归因的方法,首先要知道广告归因的几个要素:
广告归因的“因”:即用户的触达行为,一般来说都是点击、播放X秒(多数针对视频广告)。
广告归因的“果”:因果因果,我们要明确需要归属的“功劳”是什么。一般都是“转化”,比如下载、安装、付费。
归因窗口期:可以简单的理解为“归因的有效期”。比如,某广告平台的归因窗口期设置为7天,则用户触达广告后的第8天产生的转化就不再归属于该广告。
所有的“归因模型(归因规则)”其实都是基于以上3个要素设定的。以下是业内比较常用的归因模型——
1、单触点归因模型
①最后触达归因
假如用户在A、B、C、D、E多个平台(渠道)都触达了广告并最终产生了转化,按照最后触达归因模型,这个用户的转化将完全归属于最后触达的平台(渠道)。
最后触达归因模型使用得比较广泛,图文类广告一般会使用“最后点击归因”,且归因窗口期一般设置为3天或7天不等;
视频类广告(如抖音)一般会使用“最后有效播放归因”,由于“播放”触达量级很大,且广告主普遍认为播放对于用户的有效影响时间较短,所以归因窗口期一般较短,如24小时。否则,很容易将自然流量的转化归算到广告流量中去。
②首次触达归因
与最后触达归因相反,首次触达归因模型会将转化效果归属于用户首次触达的广告(渠道)。
首次触达归因模型一般用于新产品首次推出,需要大量抢占新客,从而促使广告投放的一种模型。首次触达归因的弊端也比较明显,因为它完全忽略了后续广告触达带来的影响,所以现在比较少用。
③渠道包归因
即将一个APP拆分成不同的渠道包进行标识,然后给到不同的媒体(平台)去投放。但是这种方式一般只有在Android生态适用,iOS暂不支持,渠道包归因在国内的游戏推广上还是比较普遍的。
很多人也会将“渠道包归因”放在“首次触达归因”的分类里,因为用户一旦用该渠道包下载,后续所有的行为,如付费等,都会一直归属于这个渠道。
所以严格意义上来说,渠道包归因不算一种归因模型,只是一种统计数据的方式。
而渠道包归因也有它的弊端,虽然用户用渠道包A下载了游戏,但是并不代表在下载前,用户没有被渠道BCD的广告所“影响”。
以上列举的3个归因模型,都有一个共同点,就是“功劳”均是100%归属于某个渠道(广告/平台),这类归因模型我们通常称之为“单触点归因模型”。
2、多触点归因模型
相对的“多触点归因模型”,则是加上了“归因权重”的规则,例如——
①线性归因
线性归因模型下,所有触达的渠道都有“功劳”,雨露均沾。
线性归因相对平均的功劳分配原则,很容易产生作弊行为,毕竟不同渠道的广告效果还是差异较大的。
②时间衰弱归因
即越接近用户转化节点的渠道,权重越大。
时间衰弱归因模型既看重最后转化的触达渠道,也关注了其他渠道的影响价值,是相对来说比较公平的归因模型。
③U型归因(基本位置归因)
即“首次触达渠道”和“末次触达渠道”分配较大权重,其余触达渠道分配较小权重。
U型归因模型比较关注的是“线索”和“最终转化”,所以权重分配也呈U型分布。
总结:由于多触点归因模型较复杂,所以目前国内普遍使用的都是单触点归因模型。无论使用哪种广告归因模型,都是需要根据不同的广告场景来调整的,不是一成不变的,不同的归因模型,也会产生截然不同的效果分析数据。
广告效果监测
广告效果监测是通过收集、分析和评估广告投放数据的过程,了解广告活动的效果和效益。
它基于以下原理和方法:
数据收集:广告效果监测首先需要收集相关的数据。这些数据可以包括广告展示次数、点击量、转化率、销售额等。数据可以从各种渠道获取,包括网站分析工具、广告平台、社交媒体平台等。广告监测也可以使用专门的跟踪代码或标签来收集数据,以确保准确记录广告活动的各个方面。
数据分析:收集到的数据需要进行深入的分析。这包括对广告投放的各个指标和数据点进行统计和比较。数据分析可以揭示广告活动的效果和趋势,例如哪些广告渠道或广告创意产生了最佳的回报。此外,数据分析还可以发现潜在的问题或机会,帮助优化广告投放策略。
归因模型:广告效果监测通常使用归因模型来确定广告活动对转化或销售的贡献。具体介绍上文有详细说明。
A/B测试:A/B测试是一种常用的广告效果监测方法,用于比较两个或多个不同版本的广告创意或投放策略。通过在目标受众中随机分配不同的广告版本,并收集相关数据,可以确定哪个版本的广告效果更好。A/B测试可以帮助优化广告创意和投放策略,提高广告的效果和回报率。
数据可视化:广告效果监测结果通常通过数据可视化来呈现。数据可视化将复杂的数据转化为易于理解和分析的图表、图形或报告。这样的可视化工具可以帮助决策者更好地理解广告投放的结果,并根据数据指导决策。
通过广告效果监测,我们可以获得关于广告投放效果的实时和准确的数据,从而做出基于数据的决策,优化广告投放策略,提高广告效果和回报率。
广告效果监测与广告归因的关系?
简单说,广告效果监测是效果广告真实性的保证。
我们通过下图可以看到广告归因和监测的关系:广告效果监测提供了收集和分析广告投放数据的手段,为广告归因提供了数据基础。
综合广告效果监测和广告归因的重要性,可以说二者共同构建了一个完整的广告效果评估和优化体系。通过广告效果监测,企业能够实时追踪广告投放的数据和指标,了解广告活动的绩效情况。而广告归因则帮助企业理解广告投放中哪些因素对于转化和销售产生了最大的影响,以及各个广告触点之间的相互作用。
随着技术和数据分析的不断发展,广告归因和广告效果监测的方法和工具也在不断进步。我们也应该积极采用先进的归因和检测技术,不断优化广告投放策略,与市场趋势保持同步。
参考资料:
《【计算广告】浅谈广告归因》,懒编程-二两
《广告归因的两种归因模型和四种常见的归因方式说明(上)》,PMCoder