
ClickHouse企业级实战开发
文章平均质量分 85
介绍ClickHouse在大规模数据处理、实时分析和高可用性方面的特点和最佳实践。无论您是ClickHouse初学者还是经验丰富的开发人员,这个专栏都将为您提供实用的指导和案例研究,帮助您充分利用ClickHouse的强大功能,构建高效可靠的企业级应用。
AI天才研究院
中国程序员光剑,AI天才研究院和光剑读书创始人兼CEO。
#AI大模型实战派 #技术不高冷 #生产力革命
Slogan:"用AI重构你的工作流,让每个普通人都能驾驭大模型"
展开
-
万字详解:Clickhouse 与 Doris 技术原理与对比和项目最佳实践
OLAP 数据库是专为复杂分析查询设计的数据库系统,与传统的 OLTP(Online Transaction Processing,在线事务处理)数据库相比,OLAP 数据库更注重查询性能而非事务处理能力。维度ClickHouseDoris架构特点单机性能极致,分布式能力辅助原生分布式设计,MPP 架构性能优势单表大规模聚合查询性能极佳多表关联查询表现优秀数据更新主要追加写入,有限更新能力原生支持高效行级更新一致性最终一致性强一致性易用性配置复杂,运维要求高。原创 2025-04-29 13:06:48 · 89 阅读 · 0 评论 -
ClickHouse MergeTree 存储引擎深度解析
MergeTree 存储引擎是 ClickHouse 卓越性能的核心,它通过列式存储、稀疏索引、后台合并等机制实现了高效的分析查询能力。理解 MergeTree 的工作原理对于优化 ClickHouse 性能至关重要。根据不同的业务场景,选择合适的 MergeTree 变种,并进行恰当的表设计和参数调整,可以充分发挥 ClickHouse 的性能潜力。原创 2025-04-27 14:00:40 · 23 阅读 · 0 评论 -
ClickHouse 高 QPS 查询支持不佳的深度分析
ClickHouse 在高 QPS 查询场景表现不佳,这并非技术缺陷,而是设计取舍的结果。它的架构专为处理复杂的分析查询而优化,牺牲了高并发简单查询的处理能力。在系统选型时,应根据实际查询模式和并发需求,选择合适的数据库系统或混合架构方案。对于既需要复杂分析能力又需要支持高 QPS 的场景,通常混合架构是更合理的选择,而不是试图让 ClickHouse 承担它不擅长的工作负载。原创 2025-04-27 13:59:59 · 28 阅读 · 0 评论 -
ClickHouse 与 Apache Doris 对比分析
ClickHouse 和 Apache Doris 都是面向分析型工作负载的列式数据库系统,但它们在设计理念和架构上有着根本差异。原创 2025-04-27 13:58:34 · 45 阅读 · 0 评论 -
ClickHouse 在大数据可视化中的应用技巧
本文旨在为数据分析师、数据工程师和可视化开发者提供ClickHouse在大数据可视化中的实用技巧。我们将重点讨论ClickHouse与可视化工具的集成方法、查询优化策略以及在大规模数据场景下的性能调优技术。本文首先介绍ClickHouse的基本概念和特性,然后深入探讨其在大数据可视化中的应用技巧,包括查询优化、可视化集成和性能调优。最后,我们将通过实际案例展示这些技术的应用效果。ClickHouse:由Yandex开发的开源列式OLAP数据库管理系统大数据可视化:将大规模数据集通过图形化方式呈现的技术。原创 2025-04-03 00:42:58 · 48 阅读 · 0 评论 -
ClickHouse 助力大数据领域的供应链数据分析
在当今数字化时代,供应链管理涉及大量的数据,包括采购、生产、物流、销售等各个环节。这些数据的有效分析对于优化供应链流程、降低成本、提高效率和增强竞争力至关重要。然而,传统的数据库技术在处理大规模供应链数据时往往面临性能瓶颈,难以满足实时分析和复杂查询的需求。ClickHouse 是一款开源的列式数据库管理系统,以其出色的查询性能和可扩展性而闻名。本文章的目的在于探讨 ClickHouse 如何应用于大数据领域的供应链数据分析,帮助企业更好地挖掘供应链数据的价值。原创 2025-04-03 00:41:54 · 84 阅读 · 0 评论 -
基于 ClickHouse 的电商运营平台 DMP 圈选洞察平台建设技术方案和应用实战
本文详细介绍了基于 ClickHouse OLAP 计算引擎构建电商运营平台 DMP 圈选洞察平台的全流程技术方案。从数据采集、清洗、存储、计算、实时查询到应用展示,每个环节均有针对性解决方案。利用 ClickHouse 的列式存储和分布式查询优势,实现海量数据的实时计算与分析;构建细粒度、多维度的用户标签体系,为精准营销和用户圈选提供数据支撑;设计高效的 ETL 流程和数据同步策略,确保数据实时性与一致性;通过物化视图、向量化执行和分布式架构,持续优化查询性能;原创 2025-04-02 11:54:41 · 109 阅读 · 0 评论 -
万字详解: AI 大模型结合数据仓库开发和数据分析BI报表领域中的应用实战架构原理与源代码
本报告系统解析AI大模型与数据仓库、BI分析系统的融合架构,重点阐述向量化ETL、自然语言查询、智能归因等关键技术实现方案。通过金融风控、零售预测等真实案例,展示大模型如何将传统BI分析效率提升300%+,并提供可复用的开源代码实现。AI大模型为数据仓库和BI分析带来了革命性变化。通过本文的架构设计、案例与代码,开发者可快速构建智能数据分析系统,推动企业数据驱动决策。AI大模型与数据仓库、BI系统的融合正在重塑企业数据分析的范式。具备自然语言交互能力的智能数据仓库自动化洞察生成的分析系统。原创 2025-03-31 16:51:37 · 127 阅读 · 0 评论 -
万字详解:ClickHouse 存算分离架构与数据一致性事务机制实现
成本效益存储成本降低60%,计算资源利用率提升40%弹性扩展支持秒级扩容千核计算资源数据强一致金融级事务支持能力云原生融合无缝集成现代云基础设施未来随着软硬协同优化技术的发展,ClickHouse有望在实时分析、HTAP等领域开创新的技术范式。多云/混合云部署环境需要弹性伸缩的SaaS应用强一致性要求的财务分析系统PB级历史数据交互式查询本文介绍的是如何实现ClickHouse的存算分离架构和数据一致性的事务机制,需要万字详解。首先,我得先理解存算分离是什么。原创 2025-03-31 16:06:23 · 129 阅读 · 0 评论 -
Doris 和 ClickHouse 的本质区别对比表,涵盖架构、性能、功能等核心维度
架构原理详解:Doris的协调节点:ClickHouse的分布式设计:存储原理深度解析:Doris存储结构TablePartition: 按时间/值范围划分Bucket: 哈希分桶Tablet: 数据分片Segment: 列存文件ClickHouse存储结构TablePartition: 按时间/表达式划分Data Part: 合并单元Granule: 颗粒度索引块二、查询性能对比2.1 基准测试数据测试场景Doris(v2.0.3)ClickHouse(v23.3)TPC-H原创 2025-03-31 15:55:41 · 129 阅读 · 0 评论 -
万字详解:ClickHouse 与 Doris 技术选型对比分析
ClickHouse 和 Doris 作为分析型数据库领域的佼佼者,各有优劣。ClickHouse 在查询性能和灵活性上表现突出,适合对实时性要求极高的场景;而 Doris 在高并发支持、易用性和生态系统上更具优势,适合复杂分析和湖仓一体需求。技术选型需结合具体业务场景、团队技能和资源条件综合考量。随着两者社区的持续迭代,未来在云原生和实时分析领域的竞争将更加激烈,用户可根据最新动态调整选型策略。对比维度ClickHouse架构设计。原创 2025-03-31 15:15:14 · 267 阅读 · 0 评论 -
【DMP 数据洞察分析系列】什么是TGI指数?
TGI(Target Group Index)即“目标群体指数”,是一种量化目标群体在特定行为或特征上相对总体表现强度的统计工具。TGI目标群体中具有某特征的比例总体中具有该特征的比例×100\text{TGI} = \left( \frac{\text{目标群体中具有某特征的比例}}{\text{总体中具有该特征的比例}} \right) \times 100TGI总体中具有该特征的比例目标群体中具有某特征的比例×100阈值含义TGI=100:目标群体与总体表现一致,无显著差异。原创 2025-03-31 14:23:28 · 99 阅读 · 0 评论 -
万字详解:分布式计算系统 OLAP 引擎添加事务管理功能技术方案原理和源代码实现详细指南
为分布式OLAP引擎添加事务管理功能是一个复杂的系统工程,需要权衡一致性、可用性和性能。两阶段锁协议用于写密集型操作MVCC用于读密集型分析查询快照隔离保证分析查询的一致性乐观并发控制优化批量加载性能与流处理引擎的集成,实现近实时分析自适应事务协议,根据工作负载动态调整硬件加速的事务处理(如使用RDMA、持久内存)通过合理的事务管理实现,OLAP引擎能够在保持高性能分析能力的同时,提供更强的一致性保证,满足现代数据应用的需求。原创 2025-03-29 00:11:23 · 70 阅读 · 0 评论 -
万字详解:分布式计算系统 OLAP 引擎添加事务管理功能技术方案原理和源代码实现详细指南
为分布式 OLAP 引擎添加 ACID 事务管理功能是一项极富挑战但也潜力巨大的工程任务。它试图融合 OLAP 的高吞吐分析能力与 OLTP 的数据一致性保证,以满足日益增长的实时分析和 HTAP 需求。核心挑战在于解决性能、分布式一致性、存储适配和并发控制等难题。MVCC 结合 TSO 和优化的 2PC (或基于 Raft/Paxos 的协议) 是当前主流的设计方向,辅以高效的 WAL 和后台 GC/Compaction 机制。原创 2025-03-27 17:18:07 · 32 阅读 · 0 评论 -
万字详解:Clickhouse 分布式集群存储与查询计算原理
高性能:向量化引擎与列式存储优化。灵活扩展:支持动态添加分片与副本。易用性:通过分布式表抽象底层分片细节。分片策略设计不当可能导致性能瓶颈。跨分片 JOIN 与复杂查询需谨慎优化。ZooKeeper 依赖可能成为运维负担(可考虑改用 Raft 协议)。通过合理设计数据分布、索引策略与查询模式,ClickHouse 能够支撑 PB 级数据的实时分析需求。ClickHouse采用分片(Shard)与副本(Replica)结合的分布式架构,通过多主对等设计实现水平扩展。原创 2025-03-25 14:56:35 · 261 阅读 · 0 评论 -
万字详解:OLAP 计算引擎存算分离架构实现原理与应用(以 Clickhouse 为例)
存算分离架构通过解耦存储与计算,为ClickHouse等OLAP引擎提供了成本、弹性与性能的平衡方案。实际落地中需结合业务特点设计分层策略、优化数据生命周期管理,并利用缓存与分布式查询技术弥补网络延迟短板。未来随着云原生技术的成熟,存算分离将成为大规模数据分析的标配架构。存算分离架构是一种将数据存储和计算资源解耦的系统设计思想。在这种架构中,数据存储和计算处理由不同的物理或逻辑资源独立承担,通过网络进行交互。原创 2025-03-25 11:10:14 · 61 阅读 · 0 评论 -
【万字详解】Clickhouse LowCardinality + skip index 原理详解
LowCardinality是ClickHouse提供的一种修饰类型,用法为,其中type可以是String、FixedString、Date、DateTime,以及除了Decimal之外的所有数值类型。不过其设计初衷主要是为了优化字符串存储,所以最为常见。它适用于长度和定义域都可变,但总体基数不是特别大(官方虽未严格界定,但一般认为原始string字段冗长且去重后的计数值少于1000w)的列。原创 2025-03-24 14:54:56 · 495 阅读 · 0 评论 -
数据库备份与恢复:ClickHouse数据库备份与恢复的实现与策略
在当今数据驱动的世界中,数据库的备份与恢复策略对于任何组织来说都是至关重要的。本文的主要目的是深入探讨ClickHouse数据库的备份与恢复机制,为读者提供全面而实用的指导。我们将涵盖从基本概念到高级技术,从理论分析到实际操作的各个方面,以确保读者能够掌握ClickHouse数据库的有效管理和维护技能。ClickHouse数据库的基本架构和特性备份的重要性和常见挑战ClickHouse的备份方法和策略数据恢复的流程和技巧性能优化和最佳实践大规模数据环境下的备份与恢复策略。原创 2024-12-01 02:06:23 · 205 阅读 · 0 评论 -
查询语言:ClickHouse的SQL基础与特点
ClickHouse是Yandex开源的一个高性能分布式 column-oriented DBSMS (Column-based Distributed SQL Management System),它支持ANSI SQL。ClickHouse被广泛用于OLAP (Online Analytical Processing),也就是在线分析处理领域。ClickHouse是由俄罗斯Yandex开发的,Yandex是俄罗斯最大的搜索引擎公司,类似于Google。ClickHouse适合原创 2024-02-03 02:57:00 · 531 阅读 · 0 评论 -
ClickHouse的核心概念与架构
关系型数据库系统中,常见的两种数据存储方式是列存储和行存储。行存储(Row-store):将表中的记录按照行的形式存储在磁盘上,即每行记录都是放在一起的。行存储适合于对完整记录进行频繁访问的场景,例如在OLTP(在线事务处理)系统中。列存储(Column-store):将表中的记录按照列的形式存储在磁盘上,即每列记录都是放在一起的。列存储适合于对聚合函数(例如COUNT()SUM()AVG()等)进行频繁访问的场景,例如在OLAP(在线分析处理)系统中。原创 2024-02-04 01:24:58 · 536 阅读 · 0 评论 -
ClickHouse 数据安全与权限管理:保护企业数据的关键技术
1.背景介绍随着数据量的不断增加,数据安全和权限管理在企业中的重要性也不断提高。ClickHouse作为一种高性能的列式数据库,在企业中的应用也越来越广泛。因此,了解ClickHouse数据安全与权限管理的关键技术对于保护企业数据至关重要。在本文中,我们将从以下几个方面进行阐述:背景介绍原创 2023-12-21 01:37:51 · 110 阅读 · 0 评论 -
ClickHouse 的数据安全与隐私保护:关注企业级需求
1.背景介绍随着数据化和智能化的发展,数据安全和隐私保护在企业和个人中都成为了重要的问题。ClickHouse作为一款高性能的列式数据库,在处理大规模数据时具有优势。然而,在处理敏感数据时,数据安全和隐私保护问题尤为重要。本文将从ClickHouse数据安全与隐私保护的角度进行探讨,关注企业级需求。原创 2023-12-21 01:38:22 · 128 阅读 · 0 评论 -
ClickHouse 数据分析引擎
ClickHouse是一个开源、高性能、支持分布式计算的数据库系统,用于快速处理超大规模数据集。该数据库拥有基于磁盘的存储引擎和基于内存的计算引擎,能够快速响应复杂查询,并可利用多核CPU进行并行计算。数据建模灵活:可以灵活地将原始数据转换成不同格式的表结构。高性能查询处理:支持查询优化器自动生成查询计划,自动调优查询执行效率。高扩展性:通过分布式查询处理,可以轻松实现对海量数据的实时分析。高可用性:通过冗余复制保证数据的安全性和可用性。原创 2023-08-22 22:19:59 · 227 阅读 · 0 评论 -
ClickHouse 与 Apache Kafka 整合: 高速流式处理数据解决方案
ClickHouse 是一个高性能的列式数据库管理系统,它可以实现高速的查询和插入速度。ClickHouse 的设计目标是为实时数据分析和报告提供支持。高速的查询和插入速度:ClickHouse 使用列式存储和压缩技术,以及多种索引结构,以实现高速的查询和插入速度。高效的内存管理:ClickHouse 使用高效的内存管理策略,以降低内存占用和延迟。高度可扩展:ClickHouse 支持水平扩展,以实现大规模数据处理和分析。原创 2023-12-23 01:01:45 · 231 阅读 · 0 评论 -
高性能 OLAP 解决方案:ClickHouse 在企业级场景中的应用
1.背景介绍在当今的大数据时代,企业需要更高效、更快速地进行数据分析和报表生成。传统的 OLAP 技术已经不能满足企业对于实时性、性能和可扩展性的需求。因此,高性能 OLAP 解决方案成为了企业最关注的话题之一。ClickHouse 是一种高性能的 OLAP 数据库,它在数据处理和查询速度方面具有显著的优势。在企业级场景中,Click原创 2023-12-21 02:11:12 · 202 阅读 · 0 评论 -
ClickHouse 的水平扩展策略与实践
1.背景介绍水平扩展(Horizontal Scaling)是一种在数据库系统中增加服务器数量以提高系统性能的方法。在大数据时代,数据量越来越大,传统的垂直扩展方式已经无法满足业务需求。因此,水平扩展成为了一种必须要学习和掌握的技术。ClickHouse是一个高性能的列式数据库管理系统,专为OLAP类应用程序设计。它的核心特点是高性能原创 2023-12-22 02:36:50 · 199 阅读 · 0 评论 -
ClickHouse 数据分析引擎
作者:禅与计算机程序设计艺术 1.简介ClickHouse是一个开源、列式数据库,具有高性能、高并发、水平扩展性等优点。它能够作为分布式SQL查询引擎被用于数据分析场景。本文将介绍Clickhouse数据分析引擎的一些基础知识和概念,以及如何利用ClickHouse快速进行数据分析。原创 2023-08-24 12:19:04 · 284 阅读 · 0 评论 -
ClickHouse 极简教程
ClickHouse 简介Yandex开源的数据分析的数据库,名字叫做ClickHouse,适合流式或批次入库的时序数据。ClickHouse不应该被用作通用数据库,而是作为超高性能的海量数据快速查询的分布式实时处理平台,在数据汇总查询方面(如GROUP BY),ClickHouse的查询速度非常快。ClickHouse = Click Event Stream + ...原创 2021-06-12 22:54:15 · 8431 阅读 · 0 评论 -
ClickHouse:A Fast OpenSource OLAP Database
2019年9月1日,ClickHouse作为开源分布式列存数据库首次亮相,它极大的推动了云计算、大数据分析等领域的发展。ClickHouse作为一款真正意义上的企业级的开源OLAP(OnLine Analytical Processing)数据库,在功能性上具有巨大的优势。但由于其快速的实时响应、高性能、稳定性、易用性、易于扩展等特性,也吸引到许多公司、组织和个人对其进行尝试和使用。原创 2023-07-28 01:03:15 · 1058 阅读 · 6 评论 -
4 Introducing ClickHouse Fast Open Source Columnar Dat
作者:禅与计算机程序设计艺术 1.简介Clickhouse是由yandex公司开源的一款列存数据库产品。它的设计目标是解决传统数据库在海量数据存储和高查询性能上的两个难点:第一个难点是由于索引过于复杂导致的查询效率低下;第二个难点是传统的基于行的结构无法有效支持海量数据的实时分析和查询。因此,Yand原创 2023-08-27 11:57:11 · 102 阅读 · 0 评论 -
ClickHouse 实时数仓技术架构及应用
作者:禅与计算机程序设计艺术 1.简介ClickHouse是一个开源列存储数据库,主要用于处理超大规模数据量。其能够对高速查询进行优化,支持SQL语句的执行、事务的管理、索引创建等功能,同时兼容了传统数据库中的一些功能。由于其结构化数据的存储方式,灵活的数据结构,支持多种数据类型,易于原创 2023-09-14 01:17:54 · 2431 阅读 · 6 评论 -
Mac 安装 ClickHouse 报错: Mac 10.15.4: Cannot find objcopy
Solutionrun the command below:$ brew install binutilsUpdating Homebrew...==> Auto-updated Homebrew!Updated 1 tap (homebrew/cask).==> Updated CasksUpdated 2 casks.==> Downloading http...原创 2021-06-18 01:44:15 · 10564 阅读 · 0 评论 -
【干货】开源OLAP引擎(ClickHouse、Doris、Presto、ByConity)性能对比分析
这是因为基础查询通常只涉及到少量的数据表和字段,因此能够充分利用Presto和Doris的分布式查询特性和内存计算能力,Clickhouse对多表关联支持不好,出现一些跑不通的现象,其中SQL5、8、11、13、14、17、18均超时,我们按Timeout=500秒计算,但希望显示更清晰截取Timeout=350秒。是由字节开源的云原生数仓,采用了存储计算分离的架构,实现租户资源隔离、弹性扩缩容,并具有数据读写的强一致性等特性,它支持主流的OLAP引擎优化技术,读写性能非常优异。原创 2023-06-15 03:34:47 · 13568 阅读 · 45 评论 -
《ClickHouse入门、实战与进阶》的创作之路
很高兴为您推荐一本有关ClickHouse的入门、实战与进阶书籍。这本书对于那些想要深入学习ClickHouse以及数据分析的朋友们来说,是一个非常不错的选择。我相信通过阅读这本书,您会对ClickHouse有更深入的了解,并且掌握更多实用的技巧。如果您有任何问题,欢迎随时与我交流,共同进步。《ClickHouse入门、实战与进阶》,欢迎一起交流学习,共同进步!《FFmpeg原理》的创作之路_Loken2020的博客-CSDN博客另外,本文由WPS AI辅助写作。原创 2023-06-26 00:00:04 · 7213 阅读 · 25 评论 -
Your Guide to Visualizing ClickHouse Data with Apache Superset
Part 1: InstallationInstallation Method 1: Python virtual environmentThe first method installs...转载 2021-11-17 10:10:00 · 8955 阅读 · 0 评论 -
【大数据OLAP技术新书推荐】 字节跳动、阿里巴巴大厂资深架构师程序员多年实践经验总结《ClickHouse入门、实战与进阶》...
ClickHouse 领域集大成之作-ClickHouse 入门进阶实战的标准参考书-日常工作案头必备!如果需要购买阅读的话,可以点击: https://item.jd.com/10077635610807.html目录《ClickHouse入门、实战与进阶》简介图书评价作者简介内容简介为何写作本书本书主要特点如何阅读本书致谢全书目录目录《ClickHouse入门、实战与进阶》内容...原创 2023-06-25 15:00:00 · 125 阅读 · 0 评论 -
ClickHouse 数据类型、函数大小写敏感性
SELECT *注意:case_insensitive=0 表示大小写敏感。ClickHouse 的 String 类型、Int 类型、Float 类型、Decimal类型等都是大小写敏感的(case_sensitive=0)。关于ClickHouse大小写敏感,有下面几个注意点。1.ClickHouse 对于 SQL 语句的解析是大小写敏感的,这意味着 SELECT a 和 SELECT A 表示的语义是不相同的。原创 2023-02-20 14:30:18 · 21850 阅读 · 0 评论 -
在 Mac OS X 中编译 ClickHouse
ClickHouse 支持在 Mac OS X 10.12 版本中编译。若您在用更早的操作系统版本,可以尝试在指令中使用 Gentoo Prefix 和 clang sl.通过适当的更改,它应该可以适用于任何其他的 Linux 发行版。安装 Homebrew$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/H...原创 2021-06-17 14:15:36 · 8722 阅读 · 0 评论 -
ClickHouse 数据分析引擎:了解 ClickHouse 的基本概念和实现方式
作者:禅与计算机程序设计艺术 1.简介Apache ClickHouse 是由俄罗斯·马苏龙()在俄勒冈州立大学的Yandex公司开源的一款基于列存数据库管理系统的开源分析型数据仓库系统。ClickHouse 支持原生SQL语法,通过分布式查询处理、实时数据引入、压缩等功能,其性能优越于传原创 2023-09-01 12:47:03 · 2498 阅读 · 22 评论 -
ClickHouse SQL & 表引擎基础
也许对我们来说最重要的引擎。在选择此引擎来存储报告时,此功能是最重要的,因为它允许我们在后台聚合数据,而目前我们无法自行聚合(例如,我们根本没有足够的内存用于数组聚合) ,使用时)除了重复之外,始终存在原始数据可能不正确的危险,例如,如果我们的软件出现错误。. 对我们来说重要的是,该引擎在合并期间通过主键删除重复项,并且它允许您删除数据(没有人能避免错误)。最初,我们为不同的报告设置了单独的表格+我们分别存储每小时和每日的统计数据。,重要的是我们的应用程序还发送指标,并且我们将它们与来自 的指标一起分析。原创 2023-08-09 17:30:59 · 824 阅读 · 10 评论