蓝桥杯-翻转括号序列(线段树)
题目描述
给定一个长度为n的括号序列,要求支持两种操作:
- 将 [ L i , R i ] [L_i,R_i] [Li,Ri]区间内(序列中的第 L i L_i Li个字符到第 R i R_i Ri个字符)的括号全部翻转(左括号变成右括号,右括号变成左括号)。
- 求出以L为左端点时,最长的合法括号序列对应的R(即找出最大的R使[Li,R]是一个合法括号序列)。
输入描述
输入的第一行包含两个整数n, m,分别表示括号序列长度和操作次数。
第二行包含给定的括号序列,括号序列中只包含左括号和右括号。
接下来m行,每行描述—个操作。如果该行为“1 L R”,表示第一种操作,区间为[L,R];如果该行为“2 L”表示第二种操作,左端点为L。
输出描述
对于每个第二种操作,输出一行,表示对应的R。如果不存在这样的R,输出0。
输入输出样例
输入样例 #1
7 5
((())()
2 3
2 2
1 3 5
2 3
2 1
输出样例 #1
4
7
0
0
说明
对于 20% 的评测用例,n, m ≤ 5000;
对于 40% 的评测用例,n, m ≤ 30000;
对于 60% 的评测用例,n, m ≤ 100000;
对于所有评测用例, 1 ≤ n ≤ 1 0 6 , 1 ≤ m ≤ 2 × 1 0 5 1 ≤ n ≤ 10^6 , 1 ≤ m ≤ 2 × 10^5 1≤n≤106,1≤m≤2×105。
思路
对于一个括号序列 [ L , R ] [L,R] [L,R]要合法,需要满足以下要求:
- p r e s u m [ R ] = p r e s u m [ L − 1 ] presum[R] = presum[L-1] presum[R]=presum[L−1]
- p r e s u m [ i ] ≥ p r e s u m [ L − 1 ] ∀ i ∈ [ L , R ] presum[i] \geq presum[L-1] ~\forall i\in[L,R] presum[i]≥presum[L−1] ∀i∈[L,R]
要维护这么一个要求,我们只需要满足在 [ L , R ] [L,R] [L,R]之间的前缀和最小值不小于 L − 1 L-1 L−1即可,所以可以用线段树维护一个区间前缀最小值。
同时由于我们有一个翻转操作,由于我们维护的是前缀值,所以一个区间的翻转,我们可以分为 [ 1 , L − 1 ] , [ 1 , R ] [1,L-1],[1,R] [1,L−1],[1,R]的两次翻转。稍作分析我们可以得到一次翻转前后的关系,即原最大值的相反数变为最小值,最小值的相反数变为最大值,所以我们还需要的是维护一个最大值,同时 [ R , N ] [R,N] [R,N]需要加上前缀的改变值。
代码
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1e6+5;
#define lson (p << 1)
#define rson (p << 1 | 1)
int a[N],n,m;
char s[N];
struct node
{
int mx,mn;
int rv,ad;
}tr[N<<2];
void push_up(int p)
{
tr[p].mx = max(tr[lson].mx,tr[rson].mx);
tr[p].mn = min(tr[lson].mn,tr[rson].mn);
}
void change_mn_mx(int p)
{
int mx = tr[p].mx , mn = tr[p].mn;
tr[p].mx = -mn;
tr[p].mn = -mx;
tr[p].rv ^= 1;
tr[p].ad *= -1;
}
void push_down(int p)
{
if(tr[p].rv)
{
change_mn_mx(lson);
change_mn_mx(rson);
tr[p].rv = 0;
}
if(tr[p].ad)
{
tr[lson].ad += tr[p].ad , tr[lson].mn += tr[p].ad , tr[lson].mx += tr[p].ad;
tr[rson].ad += tr[p].ad , tr[rson].mn += tr[p].ad , tr[rson].mx += tr[p].ad;
tr[p].ad = 0;
}
}
void build(int p,int l,int r)
{
if(l == r)
{
tr[p].mn = tr[p].mx = a[l];
return;
}
int mid = l + r >> 1;
build(lson,l,mid);
build(rson,mid+1,r);
push_up(p);
}
int ask1(int p,int l,int r,int pos)
{
if(l == r)
return tr[p].mn;
push_down(p);
int mid = l + r >> 1;
int ans = 0;
if(pos <= mid)
ans = ask1(lson,l,mid,pos);
else
ans = ask1(rson,mid+1,r,pos);
push_up(p);
return ans;
}
int ask2(int p,int l,int r,int pos,int val)
{
if(l == r)
return l;
push_down(p);
int ans = -1;
int mid = l + r >> 1;
if(mid >= pos && tr[lson].mn < val)
ans = ask2(lson,l,mid,pos,val);
if(ans != -1) return ans;
if(tr[rson].mn < val)
ans = ask2(rson,mid+1,r,pos,val);
push_up(p);
return ans;
}
int ask3(int p,int l,int r,int pos,int val)
{
if(l == r)
return l;
push_down(p);
int ans = -1;
int mid = l + r >> 1;
if(mid < pos && tr[rson].mn < val)
ans = ask3(rson,mid+1,r,pos,val);
if(ans != -1) return ans;
if(tr[lson].mn < val)
ans = ask3(lson,l,mid,pos,val);
push_up(p);
return ans;
}
void update(int p,int l,int r,int L,int R)
{
if(L <= l && r <= R)
{
change_mn_mx(p);
return;
}
push_down(p);
int mid = l + r >> 1;
if(L <= mid)
update(lson,l,mid,L,R);
if(R > mid)
update(rson,mid+1,r,L,R);
push_up(p);
}
void modify(int p,int l,int r,int L,int R,int val)
{
if(L <= l && r <= R)
{
tr[p].ad += val;
tr[p].mn += val;
tr[p].mx += val;
return;
}
push_down(p);
int mid = l + r >> 1;
if(L <= mid)
modify(lson,l,mid,L,R,val);
if(R > mid)
modify(rson,mid+1,r,L,R,val);
push_up(p);
}
void flip(int pos)
{
if(pos == 0)
return;
int v = ask1(1,1,n,pos);
update(1,1,n,1,pos);
if(pos != n)
modify(1,1,n,pos+1,n,-2*v);
}
int main()
{
#ifdef LOCAL
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
#endif
scanf("%d%d",&n,&m);
scanf("%s",s+1);
for(int i = 1 ; i <= n ; i ++)
{
if(s[i] == '(')
a[i] = a[i-1] + 1;
else
a[i] = a[i-1] - 1;
}
build(1,1,n);
while(m--)
{
int op;
scanf("%d",&op);
if(op == 1)
{
int l,r;
scanf("%d%d",&l,&r);
flip(l-1);
flip(r);
}
else
{
int x,target;
scanf("%d",&x);
if(x == 1)
target = 0;
else
target = ask1(1,1,n,x-1);
int y = ask2(1,1,n,x,target); //找到[x,n]中第一个 < target的值,即[x,y-1]均>=target,保证序列无不合法
if(y == -1)
y = n + 1;
int z = ask3(1,1,n,y-1,target+1);//找到[1,y-1]中第一个< target + 1的值,即[1,z]均<=target,且保证序列最长
printf("%d\n",z <= x ? 0 : z);
}
}
return 0;
}