蓝桥杯-翻转括号序列(线段树)

蓝桥杯-翻转括号序列(线段树)

题目描述

给定一个长度为n的括号序列,要求支持两种操作:

  1. [ L i , R i ] [L_i,R_i] [Li,Ri]区间内(序列中的第 L i L_i Li个字符到第 R i R_i Ri个字符)的括号全部翻转(左括号变成右括号,右括号变成左括号)。
  2. 求出以L为左端点时,最长的合法括号序列对应的R(即找出最大的R使[Li,R]是一个合法括号序列)。

输入描述

输入的第一行包含两个整数n, m,分别表示括号序列长度和操作次数。
第二行包含给定的括号序列,括号序列中只包含左括号和右括号。
接下来m行,每行描述—个操作。如果该行为“1 L R”,表示第一种操作,区间为[L,R];如果该行为“2 L”表示第二种操作,左端点为L。

输出描述

对于每个第二种操作,输出一行,表示对应的R。如果不存在这样的R,输出0。

输入输出样例

输入样例 #1

7 5
((())()
2 3
2 2
1 3 5
2 3
2 1

输出样例 #1

4
7
0
0

说明

对于 20% 的评测用例,n, m ≤ 5000;

对于 40% 的评测用例,n, m ≤ 30000;

对于 60% 的评测用例,n, m ≤ 100000;

对于所有评测用例, 1 ≤ n ≤ 1 0 6 , 1 ≤ m ≤ 2 × 1 0 5 1 ≤ n ≤ 10^6 , 1 ≤ m ≤ 2 × 10^5 1n106,1m2×105

思路

对于一个括号序列 [ L , R ] [L,R] [L,R]要合法,需要满足以下要求:

  1. p r e s u m [ R ] = p r e s u m [ L − 1 ] presum[R] = presum[L-1] presum[R]=presum[L1]
  2. p r e s u m [ i ] ≥ p r e s u m [ L − 1 ]   ∀ i ∈ [ L , R ] presum[i] \geq presum[L-1] ~\forall i\in[L,R] presum[i]presum[L1] i[L,R]

要维护这么一个要求,我们只需要满足在 [ L , R ] [L,R] [L,R]之间的前缀和最小值不小于 L − 1 L-1 L1即可,所以可以用线段树维护一个区间前缀最小值。

同时由于我们有一个翻转操作,由于我们维护的是前缀值,所以一个区间的翻转,我们可以分为 [ 1 , L − 1 ] , [ 1 , R ] [1,L-1],[1,R] [1,L1],[1,R]的两次翻转。稍作分析我们可以得到一次翻转前后的关系,即原最大值的相反数变为最小值,最小值的相反数变为最大值,所以我们还需要的是维护一个最大值,同时 [ R , N ] [R,N] [R,N]需要加上前缀的改变值。

代码

#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1e6+5;
#define lson (p << 1)
#define rson (p << 1 | 1)

int a[N],n,m;
char s[N];
struct node
{
	int mx,mn;
	int rv,ad;
}tr[N<<2];

void push_up(int p)
{
	tr[p].mx = max(tr[lson].mx,tr[rson].mx);
	tr[p].mn = min(tr[lson].mn,tr[rson].mn);
}

void change_mn_mx(int p)
{
	int mx = tr[p].mx , mn = tr[p].mn;
	tr[p].mx = -mn;
	tr[p].mn = -mx;
	tr[p].rv ^= 1;
	tr[p].ad *= -1;
}

void push_down(int p)
{
	if(tr[p].rv)
	{
		change_mn_mx(lson);
		change_mn_mx(rson);
		tr[p].rv = 0;
	}
	if(tr[p].ad)
	{
		tr[lson].ad += tr[p].ad , tr[lson].mn += tr[p].ad , tr[lson].mx += tr[p].ad;
		tr[rson].ad += tr[p].ad , tr[rson].mn += tr[p].ad , tr[rson].mx += tr[p].ad;
		tr[p].ad = 0; 
	}
}

void build(int p,int l,int r)
{
	if(l == r)
	{
		tr[p].mn = tr[p].mx = a[l];
		return;
	}
	int mid = l + r >> 1;
	build(lson,l,mid);
	build(rson,mid+1,r);
	push_up(p);
}

int ask1(int p,int l,int r,int pos)
{
	if(l == r)
		return tr[p].mn;
	push_down(p);
	int mid = l + r >> 1;
	int ans = 0;
	if(pos <= mid)
		ans = ask1(lson,l,mid,pos);
	else
		ans = ask1(rson,mid+1,r,pos);
	push_up(p);
	return ans;
}

int ask2(int p,int l,int r,int pos,int val)
{
	if(l == r)
		return l;
	push_down(p);
	int ans = -1;
	int mid = l + r >> 1;
	if(mid >= pos && tr[lson].mn < val)
		ans = ask2(lson,l,mid,pos,val);
	if(ans != -1)	return ans;
	if(tr[rson].mn < val)
		ans = ask2(rson,mid+1,r,pos,val);
	push_up(p);
	return ans;
}

int ask3(int p,int l,int r,int pos,int val)
{
	if(l == r)
		return l;
	push_down(p);
	int ans = -1;
	int mid = l + r >> 1;
	if(mid < pos && tr[rson].mn < val)
		ans = ask3(rson,mid+1,r,pos,val);
	if(ans != -1)	return ans;
	if(tr[lson].mn < val)
		ans = ask3(lson,l,mid,pos,val);
	push_up(p);
	return ans;
}

void update(int p,int l,int r,int L,int R)
{
	if(L <= l && r <= R)
	{
		change_mn_mx(p);
		return;
	}
	push_down(p);
	int mid = l + r >> 1;
	if(L <= mid)
		update(lson,l,mid,L,R);
	if(R > mid)
		update(rson,mid+1,r,L,R);
	push_up(p);
}

void modify(int p,int l,int r,int L,int R,int val)
{
	if(L <= l && r <= R)
	{
		tr[p].ad += val;
		tr[p].mn += val;
		tr[p].mx += val;
		return;
	}
	push_down(p);
	int mid = l + r >> 1;
	if(L <= mid)
		modify(lson,l,mid,L,R,val);
	if(R >  mid)
		modify(rson,mid+1,r,L,R,val);
	push_up(p);
}

void flip(int pos)
{
	if(pos == 0)
		return;
	int v = ask1(1,1,n,pos);
	update(1,1,n,1,pos);
	if(pos != n)
		modify(1,1,n,pos+1,n,-2*v);
}

int main()
{
	#ifdef LOCAL
	freopen("input.txt","r",stdin);
	freopen("output.txt","w",stdout);
	#endif
	scanf("%d%d",&n,&m);
	scanf("%s",s+1);
	for(int i = 1 ; i <= n ; i ++)
	{
		if(s[i] == '(')
			a[i] = a[i-1] + 1;
		else
		a[i] = a[i-1] - 1;
	}
	build(1,1,n);
	while(m--)
	{
		int op;
		scanf("%d",&op);
		if(op == 1)
		{
			int l,r;
			scanf("%d%d",&l,&r);
			flip(l-1);
			flip(r);
		}
		else
		{
			int x,target;
			scanf("%d",&x);
			if(x == 1)	
				target = 0; 
			else 
				target = ask1(1,1,n,x-1);
			int y = ask2(1,1,n,x,target); //找到[x,n]中第一个 < target的值,即[x,y-1]均>=target,保证序列无不合法
			if(y == -1)
				y = n + 1;
			int z = ask3(1,1,n,y-1,target+1);//找到[1,y-1]中第一个< target + 1的值,即[1,z]均<=target,且保证序列最长
			printf("%d\n",z <= x ? 0 : z);
		}
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值