蓝桥杯-蓝跳跳(矩阵快速幂 70%数据)

蓝桥杯-蓝跳跳(矩阵快速幂 70%数据)

题目描述

小蓝制作了一个机器人,取名为蓝跳跳,因为这个机器人走路的时候基本靠跳跃。

蓝跳跳可以跳着走,也可以掉头。蓝跳跳每步跳的距离都必须是整数,每步可以跳不超过 k 的长度。由于蓝跳跳的平衡性设计得不太好,如果连续两次都是跳跃,而且两次跳跃的距离都至少是 p,则蓝跳跳会摔倒,这是小蓝不愿意看到的。

小蓝接到一个特别的任务,要在一个长为 L 舞台上展示蓝跳跳。小蓝要控制蓝跳跳从舞台的左边走到右边,然后掉头,然后从右边走到左边,然后掉头,然后再从左边走到右边,然后掉头,再从右边走到左边,然后掉头,如此往复。

为了让观者不至于太无趣,小蓝决定让蓝跳跳每次用不同的方式来走。小蓝将蓝跳跳每一步跳的距离记录下来,按顺序排成一列,显然这一列数每个都不超过 k 且和是 L。这样走一趟就会出来一列数。如果两列数的长度不同,或者两列数中存在一个位置数值不同,就认为是不同的方案。

请问蓝跳跳在不摔倒的前提下,有多少种不同的方案从舞台一边走到另一边。

输入描述

输入一行包含三个整数 k, p, L。

其中, 1 ≤ p ≤ k ≤ 1000 , 1 ≤ L ≤ 1 0 18 1 ≤ p ≤ k ≤ 1000,1 ≤ L ≤ 10^{18} 1pk10001L1018

输出描述

输出一个整数,表示答案。答案可能很大,请输出答案除以 20201114的余数。

思路

由于L的范围直接dp即使可以根据循环减小空间,但时间必然是会超过的,于是想到矩阵快速幂。
F [ i ] [ 0 ] : 一 共 跳 了 i 个 单 位 的 距 离 , 且 当 前 这 一 跳 小 于 p F [ i ] [ 1 ] : 一 共 跳 了 i 个 单 位 的 距 离 , 且 当 前 这 一 跳 大 于 等 于 p F [ i ] [ 0 ] = F [ j ] [ 0 ] + F [ j ] [ 1 ]     j ∈ [ i − p + 1 , i − 1 ] F [ i ] [ 1 ] = F [ j ] [ 0 ]     j ∈ [ i − k , i − p ] F[i][0]:一共跳了i个单位的距离,且当前这一跳小于p \\ F[i][1]:一共跳了i个单位的距离,且当前这一跳大于等于p\\ F[i][0] = F[j][0] + F[j][1] ~~~ j \in{[i-p+1,i-1]}\\ F[i][1] = F[j][0] ~~~j\in[i-k,i-p] F[i][0]:ipF[i][1]:ipF[i][0]=F[j][0]+F[j][1]   j[ip+1,i1]F[i][1]=F[j][0]   j[ik,ip]
所以可以列出矩阵,以k= 5 ,p = 3 为例:
∣ F [ i ] [ 1 ] F [ i ] [ 0 ] F [ i − 1 ] [ 1 ] F [ i − 1 ] [ 0 ] F [ i − 2 ] [ 1 ] F [ i − 2 ] [ 0 ] F [ i − 3 ] [ 1 ] F [ i − 3 ] [ 0 ] F [ i − 4 ] [ 1 ] F [ i − 4 ] [ 0 ] ∣ = ∣ 0 0 0 0 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 ∣ ∣ F [ i − 1 ] [ 1 ] F [ i − 1 ] [ 0 ] F [ i − 2 ] [ 1 ] F [ i − 2 ] [ 0 ] F [ i − 3 ] [ 1 ] F [ i − 3 ] [ 0 ] F [ i − 4 ] [ 1 ] F [ i − 4 ] [ 0 ] F [ i − 5 ] [ 1 ] F [ i − 5 ] [ 0 ] ∣ \begin{vmatrix} F[i][1]\\ F[i][0]\\ F[i-1][1]\\ F[i-1][0]\\ F[i-2][1]\\ F[i-2][0]\\ F[i-3][1]\\ F[i-3][0]\\ F[i-4][1]\\ F[i-4][0]\\ \end{vmatrix}= \begin{vmatrix} 0 & 0 & 0 & 0 & 0 &1 & 0 & 1 & 0 & 1\\ 1 & 1 & 1 & 1 & 0 &0 & 0 & 0 & 0 & 0\\ 1 & 0 & 0 & 0 & 0 &0 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 &0 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 &0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 &0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 &0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 &1 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 &0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 &0 & 0 & 1 & 0 & 0\\ \end{vmatrix} \begin{vmatrix} F[i-1][1]\\ F[i-1][0]\\ F[i-2][1]\\ F[i-2][0]\\ F[i-3][1]\\ F[i-3][0]\\ F[i-4][1]\\ F[i-4][0]\\ F[i-5][1]\\ F[i-5][0]\\ \end{vmatrix} F[i][1]F[i][0]F[i1][1]F[i1][0]F[i2][1]F[i2][0]F[i3][1]F[i3][0]F[i4][1]F[i4][0]=0110000000010100000001001000000100010000000000100010000001000000000010100000000100000000001000000000F[i1][1]F[i1][0]F[i2][1]F[i2][0]F[i3][1]F[i3][0]F[i4][1]F[i4][0]F[i5][1]F[i5][0]

代码(70%数据)

#include <iostream>
#include <cstring>
using namespace std;
const int N = 2e3 ;
typedef long long ll;
const ll mod = 20201114;
ll f[1005][2];
ll p,k,l;
ll A[N];
ll B[N][N];
ll tmp1[N],tmp2[N][N];
void multi(ll B[N][N], ll A[N] , ll C[N])
{
  memset(tmp1,0,sizeof(tmp1));
  for(int i = 0 ; i < k << 1 ; i ++)
  {
    for(int j = 0 ; j < k << 1; j ++)
    {
      tmp1[i] = (tmp1[i] + B[i][j] * A[j] % mod ) % mod;
    }
  }
  memcpy(C,tmp1,sizeof(tmp1));
}

void multi(ll A[N][N] , ll B[N][N] , ll C[N][N])
{
  memset(tmp2,0,sizeof(tmp2));
  for(int i = 0 ; i < k << 1 ; i ++)
    for(int j = 0 ; j < k << 1 ; j ++)
      for(int m = 0 ; m < k << 1 ; m ++)
        tmp2[i][j] = (tmp2[i][j] + A[i][m] * B[m][j] % mod) % mod;
  memcpy(C,tmp2,sizeof(tmp2));
}

void print(ll A[N])
{
  for(int i = 0 ; i < k << 1 ; i ++)
    printf("%lld " , A[i]);
  puts("");
}

void print(ll A[N][N])
{
  for(int i = 0 ; i < k << 1 ; i ++)
  {
    for(int j = 0 ; j < k << 1 ; j ++)
      printf("%lld ",A[i][j]);
    puts("");
  }
}

int main()
{
  cin>>k>>p>>l;
  f[0][0] = 1;
  for(int i = 1 ; i <= k ; i ++)
  {
    for(int j = 1 ; j < p  && j <= i; j ++)
    {
      f[i][0] = (f[i][0] + (f[i-j][0] + f[i-j][1]) % mod ) % mod;
    }
    for(int j = p ; j <= k && j <= i; j ++)
    {
      f[i][1] = (f[i][1] + f[i-j][0]) % mod;
    }
  }
  if(l <= k)
  {
    cout<<(f[l][0] + f[l][1])%mod;
    return 0;
  }
  for(int i = 0 ; i < k ; i ++)
  {
    A[i<<1]   = f[k-i][1]; 
    A[i<<1|1] = f[k-i][0];
  }
  for(int i = (k<<1) -1 ; i >= (p<<1) - 1 ; i -= 2)
    B[0][i] = 1;
  for(int i = 0 ; i < (p - 1)<<1 ; i ++)
    B[1][i] = 1;
  for(int i = 2 ; i < k << 1 ; i ++)
    B[i][i-2] = 1;
  l -= k;
  while(l)
  {
    if(l & 1)
      multi(B,A,A);
    l >>= 1;
    multi(B,B,B);
  }
  printf("%lld\n",(A[0] + A[1]) % mod);
  return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值