Java语言实现最短路径算法(Shortest Path)在Java中实现最短路径算法,可以选择经典的Dijkstra算法。Dijkstra算法是一种用于计算加权图中单源最短路径的贪心算法。下面是一个简单的Dijkstra算法实现示例:
import java.util.*;
public class Dijkstra {
static class Edge {
int target;
int weight;
Edge(int target, int weight) {
this.target = target;
this.weight = weight;
}
}
static class Graph {
int vertices;
LinkedList<Edge>[] adjacencyList;
Graph(int vertices) {
this.vertices = vertices;
adjacencyList = new LinkedList[vertices];
for (int i = 0; i < vertices; i++) {
adjacencyList[i] = new LinkedList<>();
}
}
void addEdge(int source, int target, int weight) {
adjacencyList[source].add(new Edge(target, weight));
adjacencyList[target].add(new Edge(source, weight)); // 如果是有向图,则去掉这一行
}
void dijkstra(int startVertex) {
boolean[] visited = new boolean[vertices];
int[] distances = new int[vertices];
Arrays.fill(distances, Integer.MAX_VALUE);
distances[startVertex] = 0;
PriorityQueue<Edge> pq = new PriorityQueue<>(vertices, Comparator.comparingInt(e -> e.weight));
pq.add(new Edge(startVertex, 0));
while (!pq.isEmpty()) {
Edge edge = pq.poll();
int vertex = edge.target;
if (visited[vertex]) continue;
visited[vertex] = true;
LinkedList<Edge> edges = adjacencyList[vertex];
for (Edge e : edges) {
int target = e.target;
int weight = e.weight;
if (!visited[target] && distances[vertex] + weight < distances[target]) {
distances[target] = distances[vertex] + weight;
pq.add(new Edge(target, distances[target]));
}
}
}
printShortestPaths(startVertex, distances);
}
void printShortestPaths(int startVertex, int[] distances) {
System.out.println("Vertex\tDistance from Source " + startVertex);
for (int i = 0; i < vertices; i++) {
System.out.println(i + "\t\t" + distances[i]);
}
}
}
public static void main(String[] args) {
int vertices = 6;
Graph graph = new Graph(vertices);
graph.addEdge(0, 1, 4);
graph.addEdge(0, 2, 3);
graph.addEdge(1, 2, 1);
graph.addEdge(1, 3, 2);
graph.addEdge(2, 3, 4);
graph.addEdge(3, 4, 2);
graph.addEdge(4, 5, 6);
graph.dijkstra(0);
}
}
这个示例中,我们创建了一个包含6个顶点的图,并添加了一些边。然后,我们从顶点0开始运行Dijkstra算法,计算并打印出从顶点0到所有其他顶点的最短路径距离。