CloudSimPy安装运行

CloudSimPy下载:

GitHub地址:https://github.com/FengcunLi/CloudSimPy

使用git

git clone git@github.com:RobertLexis/CloudSimPy.git

依赖包安装:

运行需要的依赖包:

  1. Python 3.6
  2. SimPy 3.0.11
  3. TensorFlow 1.12.0
  4. Numpy 1.15.3
  5. Pandas 0.23.4

我使用的是conda虚拟环境,执行一下命令:

安装Python

conda install python==3.6.13

安装TensorFlow

conda install tensorflow==1.12.0

安装Numpy

conda install numpy==1.15.3

安装Pandas

conda install pandas==0.23.4

在安装simpy时不能用conda直接安装,需要安装本地包,下载地址:
百度网盘下载链接
提取码:qypv
下载后直接在目录文件夹中运行:

pip install simpy-3.0.11.tar.gz

python路径配置:

需要在系统变量中配置路径如图:
在这里插入图片描述
这里需要注意要配置到CloudSimPy-master文件,不然会出现问题

运行:

在Windows上直接运行Non_DAG会报错如图所示:
在这里插入图片描述

有两种解决方案

第一种

这里是windows运行多线程会出现问题,以下代码:

 for i in range(n_episode):
            algorithm = RLAlgorithm(agent, reward_giver, features_extract_func=features_extract_func,
                                    features_normalize_func=features_normalize_func)
            episode = Episode(machine_configs, jobs_configs, algorithm, None)
            algorithm.reward_giver.attach(episode.simulation)
            p = Process(target=multiprocessing_run,
                        args=(episode, trajectories, makespans, average_completions, average_slowdowns))

            processes.append(p)

        for p in processes:
            p.start()

        for p in processes:
            p.join()

替换为:

        for i in range(n_episode):
            algorithm = RLAlgorithm(agent, reward_giver, features_extract_func=features_extract_func,
                                    features_normalize_func=features_normalize_func)
            episode = Episode(machine_configs, jobs_configs, algorithm, None)
            algorithm.reward_giver.attach(episode.simulation)
            multiprocessing_run(episode, trajectories, makespans, average_completions, average_slowdowns)

改为单线程就可正常运行

第二种

改为用Linux运行代码
在这里插入图片描述

运行成功

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值