扩展欧几里得算法 推导 + 代码

  1. 目的
    求解ax + by = c 的整数解

  2. 推导过程
      先求解方程 a ∗ x + b ∗ y = g c d ( a , b ) a*x+b*y=gcd(a,b) ax+by=gcd(a,b)的一组特解 a ∗ x 1 + b ∗ y 1 = g c d ( a , b )              ( 1 ) b ∗ x 2 + ( a % b ) ∗ y 2 = g c d ( b , a % b )         ( 2 ) \qquad a*x_1+b*y_1=gcd(a,b) \qquad\ \ \ \ \ \ \ \ \ \ \ \ (1)\\\qquad b*x_2+(a\%b)*y_2=gcd(b,a\%b)\ \ \ \ \ \ \ (2) ax1+by1=gcd(a,b)            (1)bx2+(a%b)y2=gcd(b,a%b)       (2)  我们对公式(2)根据 a % b = a − ⌊ a b ⌋ ∗ b a\%b = a - \lfloor\frac{a}{b}\rfloor*b a%b=abab做展开得到 a ∗ y 2 + b ∗ ( x 2 − ⌊ a b ⌋ ∗ y 2 ) = g c d ( b , a % b )     ( 3 ) a*y_2 + b *(x_2 - \lfloor\frac{a}{b}\rfloor * y_2) = gcd(b,a\%b) \ \ \ (3) ay2+b(x2bay2)=gcd(b,a%b)   (3)  根据欧几里得算法 g c d ( a , b ) = = g c d ( b , a % b ) gcd(a,b)==gcd(b,a\%b) gcd(a,b)==gcd(b,a%b)对方程(1),(2)进行合并可得 x 1 = y 2 , y 1 = x 2 − ⌊ a b ⌋ ∗ y 2                             ( 4 ) x_1=y_2,y_1=x_2-\lfloor\frac{a}{b}\rfloor*y_2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4) x1=y2,y1=x2bay2                           (4)  如此反复进入递归k - 1次,边界为 b k = 0 , g c d ( a k , 0 ) = a k b_k = 0, gcd(a_k, 0) = a_k bk=0,gcd(ak,0)=ak边界方程为 a k ∗ x k = a k a_k * x_k = a_k akxk=ak得到一特解 x k = 1 , y k = 0 x_k = 1, y_k = 0 xk=1,yk=0  根据方程(4)我们可以在回溯过程中求出一组特解 x 1 , y 1 x_1,y_1 x1,y1

//这里为什么要加&取值符,因为在递归调用中,父函数依赖于子函数的解(x,y)
//但是子函数不方便直接return给父函数解(当然也可以借助结构体,较为麻烦)
//所以直接借助&取值符,这样子函数中的x1,y1本质就是父函数中的x2,y2(因为传入的是地址,子函数与父函数公用,不产生新的复制参数)
//这样子函数x1,y1有解了,父函数中x2,y2也有值了(本来就是同一对变量)
int exgcd(int a,int b,int &x1,int &y1)
{
	if(!b)
	{
		x1=1,y1=0;
		return a;
	}
	int x2,y2;
	int d = exgcd(b,a%b,x2,y2);
	x1=y2,y1=x2-(a/b)*y2;
	return d;
}
  1. 求通解
      方程 a ∗ x + b ∗ y = g c d ( a , b ) a*x+b*y=gcd(a,b) ax+by=gcd(a,b)中,我们对特解 x x x加上常数 k 1 k_1 k1,对特解 y 1 y_1 y1加上常数 k 2 k_2 k2,若果 k 1 k_1 k1 k 2 k_2 k2造成的影响相互抵消,那么 x + k 1 , y + k 2 x + k_1,y + k_2 x+k1y+k2就是一组新的解
      我们对方程 ( x + k 1 ) ∗ a + ( y + k 2 ) ∗ b = g c d ( a , b ) (x + k_1)*a+(y + k_2)*b=gcd(a,b) (x+k1)a+(y+k2)b=gcd(a,b)做展开
    a ∗ x + b ∗ y + k 1 ∗ a + k 2 ∗ b = g c d ( a , b )       ( 5 ) a*x+b*y + k_1*a + k_2*b=gcd(a,b)\ \ \ \ \ (5) ax+by+k1a+k2b=gcd(a,b)     (5)  易知只要满足 k 1 ∗ a = k 2 ∗ b = t ∗ l c m ( a , b ) k_1*a = k_2*b = t*lcm(a, b) k1a=k2b=tlcm(a,b)  t为整数, 方程(5)就会成立
    k 1 = t ∗ l c m ( a , b ) / a = t ∗ b / g c d ( a , b ) k_1 = t * lcm(a, b) / a = t * b / gcd(a, b) k1=tlcm(a,b)/a=tb/gcd(a,b) k 2 = t ∗ l c m ( a , b ) / a = t ∗ a / g c d ( a , b ) k_2 = t * lcm(a, b) / a = t * a / gcd(a, b) k2=tlcm(a,b)/a=ta/gcd(a,b)  即可得到任意整数解 ( x + k 1 , y + k 2 ) (x + k_1, y + k_2) (x+k1,y+k2)
      回到方程ax + by = c,有整数解的前提为 g c d ( a , b ) ∗ q = = c gcd(a,b) * q == c gcd(a,b)q==c,即为 c % g c d ( a , b ) = = 0 c \% gcd(a, b) == 0 c%gcd(a,b)==0
    解集为 a ∗ x + b ∗ y = g c d ( a , b ) a*x+b*y=gcd(a,b) ax+by=gcd(a,b)的解集 ∗ c / g c d ( a , b ) * c / gcd(a, b) c/gcd(a,b)
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值