【25.00%】【codeforces 584E】Anton and Ira

本文介绍了一个算法问题:如何以最小的成本将一个排列转换为另一个排列。通过映射两个排列,并利用一系列交换操作来达到目标排列,同时确保所花费的代价最小。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

time limit per test1 second
memory limit per test256 megabytes
inputstandard input
outputstandard output
Anton loves transforming one permutation into another one by swapping elements for money, and Ira doesn’t like paying for stupid games. Help them obtain the required permutation by paying as little money as possible.

More formally, we have two permutations, p and s of numbers from 1 to n. We can swap pi and pj, by paying |i - j| coins for it. Find and print the smallest number of coins required to obtain permutation s from permutation p. Also print the sequence of swap operations at which we obtain a solution.

Input
The first line contains a single number n (1 ≤ n ≤ 2000) — the length of the permutations.

The second line contains a sequence of n numbers from 1 to n — permutation p. Each number from 1 to n occurs exactly once in this line.

The third line contains a sequence of n numbers from 1 to n — permutation s. Each number from 1 to n occurs once in this line.

Output
In the first line print the minimum number of coins that you need to spend to transform permutation p into permutation s.

In the second line print number k (0 ≤ k ≤ 2·106) — the number of operations needed to get the solution.

In the next k lines print the operations. Each line must contain two numbers i and j (1 ≤ i, j ≤ n, i ≠ j), which means that you need to swap pi and pj.

It is guaranteed that the solution exists.

Examples
input
4
4 2 1 3
3 2 4 1
output
3
2
4 3
3 1
Note
In the first sample test we swap numbers on positions 3 and 4 and permutation p becomes 4 2 3 1. We pay |3 - 4| = 1 coins for that. On second turn we swap numbers on positions 1 and 3 and get permutation 3241 equal to s. We pay |3 - 1| = 2 coins for that. In total we pay three coins.

【题目链接】:http://codeforces.com/contest/584/problem/E

【题解】

可以把第二个排列看成是1..n的排列;
即f[s2[1]] = 1,f[s2][2]]=2…f[s2[i]] = i;
然后再把第一个排列中的各个数字用这个映射关系修改一下
即s1[1] = f[s1[1]],s1[2] = f[s1[2]]….s1[i] = f[s1[i]];
然后问题就转换成把一个无序的排列改成有序的过程.
对于每个s1[i]!=i的元素来说;它最后肯定要变成s[i]==i;
则找到s1[j]==i的下标j;
交换的代价就是|i-j|;
但是直接硬生生地这样交换肯定不行的;
swap(i,j)的代价和swap(i,k),swap(k,l),swap(l,….)….swap(..,x),swap(x,j)的总代价是一样的;
则我们完全可以把在j和i之间其他的数字也往前移动,即s[k]<=p的数字,其中p是i这个数字当前所在的位置,(显然这个位置的数字放在前面更优);
这样我们在做一件事情的时候,在不消耗多余花费的时候,尽量让答案更靠近了最优解;

【完整代码】

#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <set>
#include <map>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <queue>
#include <vector>
#include <stack>
#include <string>
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long

using namespace std;

const int MAXN = 2100;
const int dx[5] = {0,1,-1,0,0};
const int dy[5] = {0,0,0,-1,1};
const double pi = acos(-1.0);

int n;
int a[MAXN],f[MAXN];
vector < pair<int,int> > ans;

void rel(LL &r)
{
    r = 0;
    char t = getchar();
    while (!isdigit(t) && t!='-') t = getchar();
    LL sign = 1;
    if (t == '-')sign = -1;
    while (!isdigit(t)) t = getchar();
    while (isdigit(t)) r = r * 10 + t - '0', t = getchar();
    r = r*sign;
}

void rei(int &r)
{
    r = 0;
    char t = getchar();
    while (!isdigit(t)&&t!='-') t = getchar();
    int sign = 1;
    if (t == '-')sign = -1;
    while (!isdigit(t)) t = getchar();
    while (isdigit(t)) r = r * 10 + t - '0', t = getchar();
    r = r*sign;
}


int main()
{
    //freopen("F:\\rush.txt","r",stdin);
    rei(n);
    for (int i = 1;i <= n;i++)
        rei(a[i]);
    for (int i = 1;i <= n;i++)
    {
        int t;
        rei(t);
        f[t] = i;
    }
    for (int i = 1;i <= n;i++)
        a[i] = f[a[i]];
    LL tot = 0;
    for (int i = n;i >= 1;i--)
        if (a[i] == i)
            continue;
        else
        {
            int pos;
            for (int j = 1;j <= n;j++)
                if (a[j] == i)
                {
                    pos = j;
                    break;
                }
            int j = pos+1;
            while (pos != i)
                if (a[j] <= pos)
                {
                    ans.push_back(make_pair(j,pos));
                    swap(a[j],a[pos]);
                    tot+=j-pos;
                    pos = j;
                    j++;
                }
                else
                    j++;
        }
    printf("%I64d\n",tot);
    int len = ans.size();
    printf("%d\n",len);
    for (int i = 0;i <= len-1;i++)
        printf("%d %d\n",ans[i].first,ans[i].second);
    return 0;
}

转载于:https://www.cnblogs.com/AWCXV/p/7632069.html

### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值