- 博客(266)
- 收藏
- 关注
原创 训练集,验证集,测试集的区别
训练集,验证集,测试集是要分开的,不然,训练集虽然练好了,但是验证+测试的时候,我回去调参,虽然效果好了,但是你不知道是否恰好拟合了这个数据。也就是说,训练集是机器直接拟合(降低loss),验证集是人为间接拟合(看到acc不好,回头玄学调参),测试集是完全裸考,第一次见,也是唯一一次。当训练集 Loss 还在下降,但验证集 Loss 开始回升时,这就触发了。此时我们认为模型已经开始“背题”了,应该停在验证集表现最好的那一刻。
2026-01-28 17:59:03
46
原创 PnP(Plug-and-Play)即插即用
为什么我的鼠标刚刚插上就能用呢?它本来是一个鼠标,里面可能有些芯片,也没有电池,为什么插到电脑上,电脑里的硬件(软件)就可以和鼠标这个外设交互,甚至鼠标移动都会在屏幕上显示出来呢?
2025-12-22 16:38:35
130
原创 什么是熵?【图文并茂】
熵,我们都知道是描述混乱程度的一个东东。我之前的理解大概就是,熵越大,混乱程度越高,熵越小,越稳定。不过,是否有什么更加合理的解释呢?毕竟,从小到大,我们只听过这一种说法,接下来让我们看看,是否有其他的解释。我们来一个新的解释,就是,。感觉熵就像是一个信息量的含义一样,比如这个情况,可以看到扔一枚硬币的熵就是1bit。8个情况,显然就是3bit。我们可以总结,如果是,那么M种情况就需要log2M个bit。不过,?
2025-11-20 21:08:41
316
原创 【小白系列】KL散度是什么?【图文并茂】
首先,我们来想一个问题,如果有两种,我们想判断这两种分布的相似度,我们怎么判断?如果有一种方法,能够获得这两种分布的具体信息,比如这种分布是:高斯分布,泊松分布,那自然最好。然而,我们无法得知,我们,就是。那么我们就开始观测,可以看到,假设我们有一个标准硬币coin1,一个非标准硬币coin2,标准硬币当然是头面和尾面概率各是0.5,而非标准硬币的头面是0.55,尾面是0.45,下面是他们的分布图,可以看到,投掷了12次硬币,他们的观测值,这些,似乎并,因此,我们直觉上感觉,这两个硬币的分布是相同的。
2025-11-20 18:30:47
886
1
原创 【链式法则】神经网络中求导时w既是常数也是自变量的辨析(能否对常数求导?)
总的来说,这个w究竟是常数还是自变量,要看这个w是否是现在正在更新,如果只是中间的一个参数,那么就把他视作常数。但是,如果他正在更新,那么就要把他视作自变量,因为我们要对他进行更新。楼主机器学习小白,如有不对,还望各位不吝指正!
2025-11-11 16:57:50
1150
原创 【问题思考】为什么SVM中的w和超平面是垂直的?【SVM】【gemini生成】
理解为什么与超平面垂直,是理解 SVM 几何性质的关键。我们可以从数学和直观两个角度来解释。
2025-08-27 14:41:10
588
原创 【问题思考】为什么需要文件后缀?(gemini完成)
您的这个问题问得很好,它涉及到了文件系统和操作系统的基础知识。是的,您完全正确。文件名的后缀(比如.txt.jpg.py.m)主要是为了帮助操作系统和用户识别文件的类型,从而选择合适的应用程序来打开和处理它。
2025-08-21 16:27:14
390
原创 【问题思考】二分查找对比三分查找(任意点查找)的优越性(熵的角度)【gemini完成】
这是一个非常深刻的问题,它将算法的优越性与信息论的基本原理——熵——联系在了一起。让我们通过一个具体的例子来精确计算这一点。
2025-08-21 15:29:56
782
原创 【问题思考总结】CART树如何剪枝?从CART树的生成到剪枝以及为什么CTt一定小于Ct?【图文】
我想的太多了,总的来说!这里生成算法和剪枝算法都是一样的,生成的时候是一个基尼系数递减的过程,剪枝的时候是基尼系数递增的过程,但是因为有了α的存在,针对于不同的α,生成的树是不同的,对应了不同的对模型复杂度的重视程度。我现在知道的大概就是这些!我觉得这样的说法是大概正确的,在我的认知里,如果里面哪里有错误,恳请不吝赐教!
2025-08-01 12:50:21
546
1
原创 关于回归决策树CART生成算法中的最优化算法详解
首先,一共比如有M个特征,N个样本,对于每一个特征j,遍历其中的N个样本,得到N个值中,最小的值,作为这个特征的最优切分点,而其中的c1,c2是可以直接得到的。然后,遍历这M个特征,得到M个值,取其中最小的值对应的j和s作为最优切分变量和最优切分点分点。
2025-07-25 21:59:54
406
原创 为什么要有正则化项?
也就是说,正则化项实际上就描述了模型的参数量,因此,正则化项可以帮助模型减少复杂度(如果复杂度过高,正则项过大,损失函数大,将会被优化)。因为模型复杂度越高,越容易过拟合。过拟合就是由于模型参数量过大,引起的。常常听说正则化项,L1,L2范数,却从未知晓,为何要有正则化项。实际上,正则化的项描述了模型的复杂度。为什么要描述模型复杂度?
2025-05-20 20:48:53
210
原创 从比特到彩色图像到光盘
而光盘,刻录一个bit大约长度是1微米,而一个轨道就按10厘米来说,一个轨道就可以刻录100000个bit,而光盘的轨道间的间距是1.6微米,也就是说,一个光盘有上万个轨道,那么一个轨道可以刻录12.5KB,1万个轨道就可以刻录125MB,那么小小的一个光盘,可以记录几十张精美的图片,多么神奇!一张图片比如有1000*1000个像素点,每个像素点有三个通道,每个通道有256个状态,一个像素点就是3B(24bit),那么一张图片就是3MB这么算。由01序列,我们做出了一张图片!
2025-05-09 23:50:16
171
原创 干扰功率和数据功率
在信号实际传播过程中,常常会由于路径损耗和多径衰落等因素影响,受到减益,都是,值越小,那么影响越小。实际功率低于参考功率就是负数。
2025-03-05 15:44:33
342
原创 什么是非凸优化问题?
在信号处理中,许多信号恢复和图像处理问题也是非凸优化问题。在控制理论中,许多最优控制问题也是非凸的。在运筹学中,许多生产计划和资源分配问题也是非凸的。,因为非凸问题可能存在多个局部最优解,而这些局部最优解不一定等于全局最优解。非凸优化模型是指在优化问题中,目标函数或约束条件不满足凸性条件的模型。:如梯度下降法、牛顿法、拟牛顿法等,这些算法通常只能找到局部最优解,但计算效率较高。:如粒子群优化、蚁群优化等,这些算法通过模拟自然现象来寻找问题的解。:将非凸问题转化为凸问题来求解,例如通过线性化、二次化等方法。
2025-02-26 17:50:55
761
原创 常用强化学习算法,衍生关系,核心思想,改进方法等
请以表格形式给出强化学习算法的对比总结,包含优缺点等,有什么问题,别的算法怎么解决的,哪个算法是哪个算法衍生的,包含:Q-learning,DQN,DDQN,Dueling DDQN,A3C,PPO等
2025-02-25 10:45:53
453
原创 什么是将应用放在边缘服务器上创建?应用不是在用户手机上吗?边缘计算究竟如何优化?通过两个问题来辨析
边缘计算在计算上,有简单的计算能力,可以快速处理用户的请求,在存储上,相当于数据中心的cache,在网络上,因为可以在一定程度上进行本地计算,这节省了带宽,降低了网络延迟。
2025-02-24 15:57:34
544
原创 5G网络切片辨析(eMBB,mMTC,uRLLC)
URLLC有三大应用场景,分别是eMBB(增强型移动宽带)、uRLLC(高可靠低延时通信)和mMTC(海量机器通信)。增强型移动宽带(eMBB):需要关注峰值速率,容量,频谱效率,移动性,网络能效等这些指标,和传统的3G和4G类似。海量机器通信(mMTC):主要关注连接数,对下载速率,移动性等指标不太关心。高可靠低时延通信(uRLLC):主要关注高可靠性,移动性和超低时延,对连接数,峰值速率,容量,频谱效率,网络能效等指标都没有太大需求。
2025-02-24 09:41:06
2590
原创 SARSA算法是什么?怎样作用?逐步说明SARSA更新步骤。
SARSA首先是从st开始,选动作at,观察到了奖励rt+1,和下一个状态st+1在st+1中选择下一个动作at+1。并进行更新。解答:默认是最优路径下的奖励函数,这玩意有点先验啊,我怎么提前指导是两步后是最优呢?有点懵,先记住吧,似乎是学出来的最优路径。综合考虑了即时奖励和未来的潜在奖励。什么是td误差?通过增加当前状态的价值估计,我们使价值函数更接近实际的预期回报,从而提高模型的准确性。当前的价值估计应该和预期相等。!
2025-02-19 18:47:52
736
原创 通信资源解释表
信道矩阵:是一个复数矩阵,用于描述信号在传输过程中经过的信道特性,包括信号的衰减和相位变化。它不是一个确定的数,而是一个矩阵,其中的每个元素都是一个复数,表示信号从一个发射天线到一个接收天线的传输特性。相位变化:信道矩阵的每个元素的辐角(即复数的角度)表示信号在传输过程中的相位变化。信道增益:信道矩阵的每个元素的模(即复数的绝对值)表示信号在传输过程中的衰减程度。信号检测:通过信道矩阵,可以对接收到的信号进行检测和解调,提高信号的检测精度。相位变化:相位变化会影响信号的叠加效果,可能导致信号的增强或减弱。
2025-02-08 13:57:03
557
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅