MySQL索引

本文详细介绍了MySQL的索引,包括索引概述、优缺点、InnoDB中的B+树索引推演、常见索引类型如聚簇索引、二级索引和联合索引,以及InnoDB与MyISAM的对比。讨论了索引的代价,强调了索引在空间和时间上的影响,并探讨了不同数据结构的选择,如Hash结构和B+树。文章最后提出思考问题,分析了B+树相比B树的优势以及Hash索引的局限性。
摘要由CSDN通过智能技术生成

MySQL索引

1. 索引概述

MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构。

mysql进行数据查询时,首先查看查询条件是否命中某条索引,符合就通过索引查找相关数据,不符合则需要全表扫描。

索引的本质:索引是数据结构。你可以简单理解为“排好序的快速查找数据结构”,满足特定查找算法。 这些数据结构以某种方式指向数据, 这样就可以在这些数据结构的基础上实现 高级查找算法 。

索引是在存储引擎中实现的,因此每种存储引擎的索引不一定完全相同,并且每种存储引擎不一定支持所有的索引类型。同时,存储引擎可以定义每个表的最大索引数和最大索引长度。所有存储引擎支持每个表至少16个索引,总索引长度至少为256字节

2、优点

(1)类似大学图书馆建书目索引,提高数据检索的效率,降低 数据库的IO成本 ,这也是创建索引最主 要的原因。

(2)通过创建唯一索引,可以保证数据库表中每一行 数据的唯一性 。

(3)在实现数据的 参考完整性方面,可以 加速表和表之间的连接 。换句话说,对于有依赖关系的子表和父表联合查询时, 可以提高查询速度。

(4)在使用分组和排序子句进行数据查询时,可以显著减少查询中分组和排序的时间 ,降低了CPU的消耗。

3、缺点

增加索引也有许多不利的方面,主要表现在如下几个方面:

(1)创建索引和维护索引要 耗费时间 ,并 且随着数据量的增加,所耗费的时间也会增加。

(2)索引需要占 磁盘空间 ,除了数据表占数据空间之 外,每一个索引还要占一定的物理空间, 存储在磁盘上 ,如果有大量的索引,索引文件就可能比数据文 件更快达到最大文件尺寸。

(3)虽然索引大大提高了查询速度,同时却会 降低更新表的速度 。当对表 中的数据进行增加、删除和修改的时候,索引也要动态地维护,这样就降低了数据的维护速度。 因此,选择使用索引时,需要综合考虑索引的优点和缺点。

考虑到索引的缺点

我们最好先删除索引再插入数据,插入完成后再创建索引

4、 InnoDB中索引的推演

4.1、索引之前的查找

1、在一个页中查找

假设数据量比较少都在一个页中

  • 以主键为搜索条件

主键一般是自增的,可以在页目录中使用二分法快速定位到对应的槽,然后再遍历该槽对应分组中的记录即可快速找到指定的记录。

  • 以其他列作为搜索条件

因为在数据页中并没有对非主键列建立所谓的页目录,所以我们无法通过二分法快速定位相应的槽。这种情况下只能从最小记录开始依次遍历单链表中的每条记录,然后对比每条记录是不是符合搜索条件。很显然,这种查找的效率是非常低的。

2、很多页中查找

大部分情况下我们表中存放的记录都是非常多的,需要好多的数据页来存储这些记录。在很多页中查找记录的话可以分为两个步骤:

1.定位到记录所在的页。

2.从所在的页内中查找相应的记录。

在没有索引的情况下,不论是根据主键列或者其他列的值进行查找,由于我们并不能快速的定位到记录所在的页,所以只能从第一个页 沿着双向链表一直往下找, 在每一个页中根据我们 上面的查找方式去查找指定的记录。因为要遍历所有的数据页,所以这种方式显然是超级耗时的。如果一个表有一 亿条记录呢? 此时索引应运而生。

4.2、设计索引

建立一张表

mysql> CREATE TABLE index_demo(
-> c1 INT,
-> c2 INT,
-> c3 CHAR(1),
-> PRIMARY KEY(c1)
-> ) ROW_FORMAT = Compact;

有三列,其中c1是主键

该表中每一条记录的结构如下

在这里插入图片描述

record_type :记录头信息的一项属性,表示记录的类型, 0 表示普通记录、 2 表示最小记 录、 3 表示最大记录、 1代表目录项下面讲

next_record :记录头信息的一项属性,表示下一条地址相对于本条记录的地址偏移量,我们用 箭头来表明下一条记录是谁。

把一些记录放到页里的示意图就是:

在这里插入图片描述

一个简单的索引设计方案

我们在根据某个搜索条件查找一些记录时为什么要遍历所有的数据页呢?因为各个页中的记录并没有规 律,我们并不知道我们的搜索条件匹配哪些页中的记录,所以不得不依次遍历所有的数据页。所以如果 我们 想快速的定位到需要查找的记录在哪些数据页 中该咋办?我们可以为快速定位记录所在的数据页而 建 立一个目录 ,建这个目录必须完成下边这些事:

  • 下一个数据页中用户记录的主键值必须大于上一个页中用户记录的主键值。
  • 给所有的页建立一个目录项

在这里插入图片描述

以 页28 为例,它对应 目录项2 ,这个目录项中包含着该页的页号 28 以及该页中用户记录的最小主 键值 5 。我们只需要把几个目录项在物理存储器上连续存储(比如:数组),就可以实现根据主键 值快速查找某条记录的功能了。比如:查找主键值为 20 的记录,具体查找过程分两步: 1. 先从目录项中根据 二分法 快速确定出主键值为 20 的记录在 目录项3 中(因为 12 < 20 < 209 ),它对应的页是 页9 。 2. 再根据前边说的在页中查找记录的方式去 页9 中定位具体的记录。 至此,针对数据页做的简易目录就搞定了。这个目录有一个别名,称为 索引 。

InnoDB中的索引方案

① 迭代1次:目录项纪录的页

我们把前边使用到的目录项放到数据页中的样子就是这样

在这里插入图片描述

两者用的是一样的数据页,都会为主键值生成 Page Directory (页目录),从而在按照主键值进行查找时可以使用 二分法 来加快查询速度

  1. 现在以查找主键为 20 的记录为例,根据某个主键值去查找记录的步骤就可以大致拆分成下边两步: 先到存储 目录项记录 的页,也就是页30中通过 二分法 快速定位到对应目录项,因为 12 < 20 < 209 ,所以定位到对应的记录所在的页就是页9。

  2. 再到存储用户记录的页9中根据 二分法 快速定位到主键值为 20 的用户记录。

②迭代2次:多个目录项纪录的页

当目录项纪录的页满了的时候,我们需要再新开辟一页,目录项纪录的页之间用双向链表存储

在这里插入图片描述

此时目录项需要顺序查找

③ 迭代3次:目录项记录页的目录页

在这里插入图片描述

我们生成了一个存储更高级目录项的 页33

我们可以用下边这个图来描述它:

在这里插入图片描述

这个数据结构,它的名称是 B+树 。

④ B+Tree

一个B+树的节点其实可以分成好多层,规定最下边的那层,也就是存放我们用户记录的那层为第 0 层, 之后依次往上加。之前我们做了一个非常极端的假设:存放用户记录的页 最多存放3条记录 ,存放目录项 记录的页 最多存放4条记录 。其实真实环境中一个页存放的记录数量是非常大的,假设所有存放用户记录 的叶子节点代表的数据页可以存放 100条用户记录 ,所有存放目录项记录的内节点代表的数据页可以存 放 1000条目录项记录 ,那么: 如果B+树只有1层,也就是只有1个用于存放用户记录的节点,最多能存放 100 条记录。 如果B+树有2层,最多能存放 1000×100=10,0000 条记录。 如果B+树有3层,最多能存放 1000×1000×100=1,0000,0000 条记录。 如果B+树有4层,最多能存放 1000×1000×1000×100=1000,0000,0000 条记录。相当多的记 录!!! 你的表里能存放 100000000000 条记录吗?所以一般情况下,我们 用到的B+树都不会超过4层 ,那我们 通过主键值去查找某条记录最多只需要做4个页面内的查找(查找3个目录项页和一个用户记录页),又 因为在每个页面内有所谓的 Page Directory (页目录),所以在页面内也可以通过 二分法 实现快速 定位记录。

5、常见的索引

索引按照物理实现方式可以分为两种

聚簇(聚集)索引和非聚簇(非聚集)索引。我们也把非聚集索引称为二级索引或辅助索引

聚簇索引

聚簇索引如上面的B+树所示,并不是一种单纯的索引类型,而是一种数据存储方式(所有的用户记录都存在了叶子节点)也就是所谓的索引既数据,数据即索引

术语“聚簇表示”数据行和相邻的键值聚簇的存储在一起

特点:

  1. 使用记录主键值的大小进行记录和页的排序,这包括三个方面的含义:
    • 页内 的记录是按照主键的大小顺序排成一个 单向链表 。
    • 各个存放 用户记录的页 也是根据页中用户记录的主键大小顺序排成一个 双向链表 。
    • 存放 目录项记录的页 分为不同的层次,在同一层次中的页也是根据页中目录项记录的主键 大小顺序排成一个 双向链表 。
  2. B+树的 叶子节点 存储的是完整的用户记录。 所谓完整的用户记录,就是指这个记录中存储了所有列的值(包括隐藏列)。
  3. 把具有这两种特性的B+树成为聚簇索引,所有完整的用户记录都存放在这个聚簇索引的叶子节点处。这种聚簇索引并不需要我们在sql语句中显示的使用index语句去创建,innoDB引擎会自动的为我们创建。

优点:

  • 数据访问更快 ,因为聚簇索引将索引和数据保存在同一个B+树中,因此从聚簇索引中获取数据比非 聚簇索引更快
  • 聚簇索引对于主键的 排序查找范围查找 速度非常快
  • 按照聚簇索引排列顺序,查询显示一定范围数据的时候,由于数据都是紧密相连,数据库不用从多 个数据块中提取数据,所以 节省了大量的io操作 。

缺点:

  • 插入速度严重依赖于插入顺序 ,按照主键的顺序插入是最快的方式,否则将会出现页分裂,严重影 响性能。因此,对于InnoDB表,我们一般都会定义一个自增的ID列为主键
  • 更新主键的代价很高 ,因为将会导致被更新的行移动。因此,对于InnoDB表,我们一般定义主键为 不可更新
  • 二级索引访问需要两次索引查找 ,第一次找到主键值,第二次根据主键值找到行数据

限制:

  • 对于MySQL数据库目前只有InnoDB数据引弓|擎支持聚簇索引,而MyISAM并不支持聚簇索引。

  • 由于数据物理存储排序方式只能有一种,所以每个MySQL的表只能有一个聚簇索引。-般情况下就是该表的主键。

  • 如果没有定义主键,Innodb会选择 非空的唯一索引代替。如果没有这样的索引,Innodb会隐式的定义-一个主键来作为聚簇索引。

  • 为了充分利用聚簇索弓的聚簇的特性,所以innodb表的主键列尽量选用有序的顺序id,而不建议用无序的id,比如UUID、MD5、 HASH、 字符串列作为主键无法保证数据的顺序增长。

二级索引(辅助索引、非聚簇索引)

上面介绍的聚簇索引只能在搜索条件是主键值时才能发挥作用,因为B+树中的数据都是按照主键进行排序的。那如果我们想以别的列作为搜索条件该怎么办?肯定不能从头到尾沿着链表依次遍历一遍

我们可以多建立几棵B+树,不同的B+树中的数据采取不同的排序规则如用c2列的大小作为数据页,页中记录的排序规则,再建一颗B+树

在这里插入图片描述

给c2建立索引,B+树的叶子节点存储的是按照顺序存放的c2的值以及其对应的主键,当c2值相同时按照主键递增的形式存储。

这样就可以查到主键从而查到表中的数值

概念:回表 我们根据这个以c2列大小排序的B+树只能确定我们要查找记录的主键值,所以如果我们想根 据c2列的值查找到完整的用户记录的话,仍然需要到 聚簇索引 中再查一遍,这个过程称为 回表 。也就 是根据c2列的值查询一条完整的用户记录需要使用到 2 棵B+树!

**问题:**为什么我们还需要一次 回表 操作呢?直接把完整的用户记录放到叶子节点不OK吗?

这样会导致索引占用的空间过大

联合索引

我们也可以同时以多个列的大小作为排序规则,也就是同时为多个列建立索引,比方说我们想让B+树按 照 c2和c3列 的大小进行排序,这个包含两层含义:

  • 先把各个记录和页按照c2列进行排序。
  • 在记录的c2列相同的情况下,采用c3列进行排序

注意一点,以c2和c3列的大小为排序规则建立的B+树称为 联合索引 ,本质上也是一个二级索引。它的意 思与分别为c2和c3列分别建立索引的表述是不同的,

不同点如下:

  • 建立 联合索引 只会建立如上图一样的1棵B+树。
  • 为c2和c3列分别建立索引会分别以c2和c3列的大小为排序规则建立2棵B+树。

6、InnoDB的B+树索引的注意事项

1、根页面位置万年不动

我们前边介绍B+树索引的时候,为了大家理解.上的方便,先把存储用户记录的叶子节点都画出来,然后接着画存储目录项记录的内节点,实际上B+树的形成过程是这样的:

  • 每当为某个表创建一 个B+树索引(聚簇索引不是人为创建的,默认就有)的时候,都会为这个索引创建一 个根节点页面。最开始表中没有数据的时候,每个B+树索弓|对应的根节点中既没有用户记录,也没有目录项记录。

  • 随后向表中插入用户记录时,先把用户记录存储到这个根节点中。

  • 当根节点中的可用空间用完时继续插入记录,此时会将根节点中的所有记录复制到一个新分配的页,比如页a中,然后对这个新页进行页分裂的操作,得到另一个新页,比如页b。这时新插入的记录根据键值(也就是聚簇索引中的主键值,二级索引中对应的索引列的值)的大小就会被分配到页a或者页b中,而根节点便升级为存储目录项记录的页。

这个过程特别注意的是:一个B+树索引的根节点自诞生之日起,便不会再移动。这样只要我们对某个表建立一个索引,那么它的根节点的页号便会被记录到某个地方,然后凡是InnoDB存储引擎需要用到这个索引的时候,都会从那个固定的地方取出根节点的页号,从而来访问这个索引。

2、 内节点中目录项记录的唯一性

在这里插入图片描述

目录项中的记录是c2+主键+页号

7、MyISAM中的索引方案

我们知道InnoDB中索引即数据,也就是聚簇索引的那棵B+树的叶子节点中已经把所有完整的用户记录都包含了,而MyISAM的索弓|方案虽然也使用树形结构,但是却将索引和数据分开存储:

  • 将表中的记录按照记录的插入顺序单独存储在一个文件中, 称之为数据文件。这个文件并不划分为若干个数据页,有多少记录就往这个文件中塞多少记录就成了。由于在插入数据的时候并没有刻意按照主键大小排序,所以我们并不能在这些数据上使用二分法进行查找。

  • 使用MyISAM存储引擎的表会把索引信息另外存储到一一个称为索引文件的另一个文件中。MyISAM 会单独为表的主键创建一个索引, 只不过在索引的叶子节点中存储的不是完整的用户记录,而是主键值+数据记录地址的组合。

在这里插入图片描述

如果我们在Col2上建立一个二级索引,则此索引的结构同理

8、MyISAM 与 InnoDB对比

MyISAM的索引方式都是“非聚簇”的,与InnoDB包含1个聚簇索引是不同的。小结两种引擎中索引的区 别

① 在InnoDB存储引擎中,我们只需要根据主键值对 聚簇索引 进行一次查找就能找到对应的记录,而在 MyISAM 中却需要进行一次 回表 操作,意味着MyISAM中建立的索引相当于全部都是 二级索引 。

② InnoDB的数据文件本身就是索引文件,而MyISAM索引文件和数据文件是 分离的 ,索引文件仅保存数 据记录的地址。

③ InnoDB的非聚簇索引data域存储相应记录 主键的值 ,而MyISAM索引记录的是 地址 。换句话说, InnoDB的所有非聚簇索引都引用主键作为data域。

④ MyISAM的回表操作是十分 快速 的,因为是拿着地址偏移量直接到文件中取数据的,反观InnoDB是通 过获取主键之后再去聚簇索引里找记录,虽然说也不慢,但还是比不上直接用地址去访问。

InnoDB要求表 必须有主键 ( MyISAM可以没有 )。如果没有显式指定,则MySQL系统会自动选择一个 可以非空且唯一标识数据记录的列作为主键。如果不存在这种列,则MySQL自动为InnoDB表生成一个隐 含字段作为主键,这个字段长度为6个字节,类型为长整型。

9、应用

了解不同存储引擎的索引实现方式对于正确使用和优化索引都非常有帮助。比如:

举例1:知道了InnoDB的索引实现后,就很容易明白为什么不建议使用过长的字段作为主键,因为所有二级索引都引用主键索引,过长的主键索引会令二级索引变得过大。

举例2:用非单调的字段作为主键在InnoDB中不是个好主意,因为InnoDB数据文件本身是一 棵B+Tree, 非单调的主键会造成在插入新记录时,数据文件为了维持B+Tree的特性而频繁的分裂调整,十分低效,而使用自增字段作为主键则是一个很好的选择。

10、索引的代价

  • 空间上的代价

    每建立一个索引都要为它建立一棵B+树,每一棵B+树的每一个节点都是一个数据页,一个页默认会 占用 16KB 的存储空间,一棵很大的B+树由许多数据页组成,那就是很大的一片存储空间。

  • 时间上的代价

    每次对表中的数据进行 增、删、改 操作时,都需要去修改各个B+树索引。而且我们讲过,B+树每 层节点都是按照索引列的值 从小到大的顺序排序 而组成了 双向链表 。不论是叶子节点中的记录,还 是内节点中的记录(也就是不论是用户记录还是目录项记录)都是按照索引列的值从小到大的顺序 而形成了一个单向链表。而增、删、改操作可能会对节点和记录的排序造成破坏,所以存储引擎需 要额外的时间进行一些 记录移位 , 页面分裂 、 页面回收 等操作来维护好节点和记录的排序。如果 我们建了许多索引,每个索引对应的B+树都要进行相关的维护操作,会给性能拖后腿。

11、MySQL数据结构选择的合理性

从MySQL的角度讲,不得不考虑一个现实问题就是磁盘I/0。 如果我们能让索引的数据结构尽量减少硬盘的I/0操作,所消耗的时间也就越小。可以说,磁盘的I/0 操作次数对索弓|的使用效率至关重要。

查找都是索引操作,一般来说索引非常大,尤其是关系型数据库,当数据量比较大的时候,索引的大小有可能几个G甚至更多,为了减少索引在内存的占用,数据库索引是存储在外部磁盘上的。当我们利用索引查询的时候,不可能把整个索|全部加载到内存,只能逐一加载 ,那么MySQL衡量查询效率的标准就是磁盘I0次数。

Hash结构

在这里插入图片描述

每次存储数据时根据数据的值使用hash函数计算其hash值,然后存入hash表中

哈希函数h有可能将两个不同的关键字映射到相同的位置,这叫做 碰撞 ,在数据库中一般采用 链 接法 来解决。在链接法中,将散列到同一槽位的元素放在一个链表中,

hash结构的查找效率是最高的,查找时根据hash函数计算条件的hash值,在没有冲突的情况下可以以o(1)的复杂的查找

Hash结构效率高,那为什么索引结构要设计成树型呢?

原因1: Hash 索引仅能满足(=) (<>) 和IN查询。如果进行范围查询,哈希型的索引,时间复杂度会退化为0(n);而树型的“有序特性,依然能够保持0(log2N)的高效率。

原因2: Hash 索引还有一个缺陷,数据的存储是没有顺序的,在ORDER BY的情况下,使用Hash索弓|还需要对数据重新排序。

原因3:对于联合索引的情况,Hash 值是将联合索引键合并后一起起来计算的, 无法对单独的一个键或者几个索引键进行查询。

原因4:对于等值查询来说,通常Hpsh索弓|的效率更高,不过也存在一种情况, 就是索引列的重复值如果很多,效率就会降低。这是因为遇到Hash冲突时,需要遍历桶中的行指针来进行比较,找到查询的关键字,非常耗时。所以,Hash 索引通常不会用到重复值多的列上,比如列为性别、年龄的情况等。

Hash索引适用存储引擎如表所示:

在这里插入图片描述

Hash索引的适用性:

Hash索|存在着很多限制,相比之下在数据库中B+树索弓|的使用面会更广,不过也有一-些场景采用Hash索引效率更高,比如在键值型(Key-Value) 数据库中,Redis 存储的核心就是Hash 表。

MySQL中的Memory存储引擎支持Hash存储,如果我们需要用到查询的临时表时,就可以选择Memory存储引擎,把某个字段设置为Hash索引,比如字符串类型的字段,进行Hash计算之后长度可以缩短到几个字节。当字段的重复度低,而且经常需要进行等值查询的时候,采用Hash索引是个不错的选择。

另外,**InnoDB 本身不支持Hash索引,但是提供自适应Hash索引(Adaptive Hash Index)。**什么情况下才会使用自适应Hash索引呢?如果某个数据经常被访问,当满足一定条件的时候,就会将这个数据页的地址存放到Hash表中。这样下次查询的时候,就可以直接找到这个页面的所在位置。这样让B+树也具备了Hash索引的优点。

在这里插入图片描述

采用自适应 Hash 索引目的是方便根据 SQL 的查询条件加速定位到叶子节点,特别是当 B+ 树比较深的时 候,通过自适应 Hash 索引可以明显提高数据的检索效率。 我们可以通过 innodb_adaptive_hash_index 变量来查看是否开启了自适应 Hash,比如:

show variables like '%adaptive_hash_index';

二叉搜索树

如果我们利用二叉树作为索引结构,那么磁盘的IO次数和索引树的高度是相关的

会出现以下的极端情况

在这里插入图片描述

为了提高查询效率,就需要 减少磁盘IO数 。为了减少磁盘IO的次数,就需要尽量 降低树的高度 ,需要把 原来“瘦高”的树结构变的“矮胖”,树的每层的分叉越多越好。

B-树

B 树的结构如下图所示:

在这里插入图片描述

一个 M 阶的 B 树(M>2)有以下的特性:

  1. 根节点的儿子数的范围是 [2,M]。
  2. 每个中间节点包含 k-1 个关键字和 k 个孩子,孩子的数量 = 关键字的数量 +1,k 的取值范围为 [ceil(M/2), M]。
  3. 叶子节点包括 k-1 个关键字(叶子节点没有孩子),k 的取值范围为 [ceil(M/2), M]。
  4. 假设中间节点节点的关键字为:Key[1], Key[2], …, Key[k-1],且关键字按照升序排序,即 Key[i]<Key[i+1]。此时 k-1 个关键字相当于划分了 k 个范围,也就是对应着 k 个指针,即为:P[1], P[2], …,P[k],其中 P[1] 指向关键字小于 Key[1] 的子树,P[i] 指向关键字属于 (Key[i-1], Key[i]) 的子树,P[k]指向关键字大于 Key[k-1] 的子树。
  5. 所有叶子节点位于同一层。

在这里插入图片描述

B+ 树和 B-树的差异:

  1. 有 k 个孩子的节点就有 k 个关键字。也就是孩子数量 = 关键字数,而 B 树中,孩子数量 = 关键字数 +1。
  2. 非叶子节点的关键字也会同时存在在子节点中,并且是在子节点中所有关键字的最大(或最 小)。
  3. 非叶子节点仅用于索引,不保存数据记录,跟记录有关的信息都放在叶子节点中。而 B 树中, 非 叶子节点既保存索引,也保存数据记录 。
  4. 所有关键字都在叶子节点出现,叶子节点构成一个有序链表,而且叶子节点本身按照关键字的大 小从小到大顺序链接。
  5. B 树和 B+ 树都可以作为索引的数据结构,在 MySQL 中采用的是 B+ 树。 但B树和B+树各有自己的应用场景,不能说B+树完全比B树好,反之亦然。

B+树和B树有个根本的差异在于,B+ 树的中间节点并不直接存储数据。这样的好处都有什么呢?

首先,B+ 树查询效率更稳定。因为B+树每次只有访问到叶子节点才能找到对应的数据,而在B树中,非叶子节点也会存储数据,这样就会造成查询效率不稳定的情况,有时候访问到了非叶子节点就可以找到关键字,而有时需要访问到叶子节点才能找到关键字。

其次,B+树的查询效率更高。这是因为通常B+树比B树更矮胖(阶数更大, 深度更低),查询所需 要的磁盘I/0也会更少。同样的磁盘页大小,B+ 树可以存储更多的节点关键字。B树由于非叶节点也会存数据,因此每页存储的节点树会比B树少

不仅是对单个关键字的查询上,在查询范围上,B+ 树的效率也比B树高。这是因为所有关键字都出现在B+树叶子节点中。而在B树中还要对其进行中序遍历。

11、思考

思考题:为了减少1/0,索引树会一次性加载吗?

1、数据库索引是存储在磁盘上的,如果数据量很大,必然导致索弓的大小也会很大,超过几个G。

2、当我们利用索引|查询时候,是不可能将全部几个G的索弓都加载进内存的,我们能做的只能是:逐- -加载每一个磁盘页,因为磁盘页对应着索引树的节点。

思考题: B+树的存储能力如何?为何说一般查找行记录, 最多只需1~3次磁盘I0

InnoDB存储引擎中页的大小为16KB,一般表的主键类型为INT (占用4个字节)或BIGINT (占用8个字节), 指针类型也一般为4或8个字节,也就是说一个页(B+Tree 中的一个节点)中大概存储

16KB/(8B+8B)=1K 个键值(因为是估值,为方便计算,这里的K取值为10^3。也就是说一个深度为 3的B+Tree索弓可以维护10^3 * 10^3 * 10^3= 10亿条记录。(这里假定一 个数据页也存储10^3条行记录数据 了)

实际情况中每个节点可能不能填充满,因此在数据库中,B+Tree 的高度一般都在 2~4层。MySQL 的InnoDB存储引擎在设计时是将根节点常驻内存的,也就是说查找某-键值的行记录时最多只需要 1~3次磁盘1/0操作。

思考题:为什么说B+树比B树更适合实际应用中操作系统的文件索引和数据库索引?

1、 B+树的磁盘读写代价更低

B+树的内部结点并没有指向关键字具体信息的指针。因此其内部结点相对B树更小。如果把所有同一内部结点的关键字存放在同一盘块中, 那么盘块所能容纳的关键字数量也越多。一次性读入内存中的需要查找的关键字也就越多。相对来说I0读写次数也就降低了。

2、B+树的查询效率更加稳定

由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。

思考题: Hash 索引与B+树索引的区别

我们之前讲到过B+树索引的结构,Hash索引结构和B+树的不同,因此在索引使用上也会有差别。

1、Hash 索引不能进行范围查询,而B+树可以。这是因为Hash索弓|指向的数据是无序的,而B+树的叶子节点是个有序的链表。

2、Hash 索引不支持联合索引的最左侧原则(即联合索引的部分索引无法使用) ,而B+树可以。对于联合索引来说,Hash 索引在计算Hash值的时候是将索引键合并后再一起计算 Hash’值,所以不会针对每个索引单独计算Hash值。因此如果用到联合索引的一个或者几个索引时,联合索引无法被利用。

3、Hash 索引不支持ORDER BY排序,因为Hash索弓|指向的数据是无序的,因此无法起到排序优化的作用,而B+树索引数据是有序的,可以起到对该字段ORDER BY排序优化的作用。同理,我们也无法用Hash索引进行模糊查询

4、innoDB不支持哈希索引

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值