科研学习|论文解读——Past Present and Future of Industry4.0 a systematic literature review

工业4.0的过去、现在和将来——系统性文献综述和研究议程提案

Yongxin Liao, Fernando Deschamps, Eduardo de Freitas Rocha Loures & Luiz Felipe Pierin Ramos

a. Polytechnic School, Pontifical Catholic University of Parana (PUCPR), Curitiba, Brazil;  b. Department of Mechanical Engineering(DEMEC), Federal University of Paraná (UFPR), Curitiba, Brazil; c. Academic Department of Electrotechnology (DAELT), Federal University of Technology - Paraná (UTFPR), Curitiba, Brazil

摘要

近年来,第四次工业革命越来越受到世界各国关注。在目前的文献中,仍然缺乏系统地综述这一新工业革命浪潮现状的努力。本研究的目的是通过调查工业4.0的学术进展来解决这一差距。对截至2016年6月底在线发表的工业4.0主题的学术文章进行了系统的文献综述。本文对纳入论文的一般数据(相关期刊、学科领域和类别、会议、关键词)和四个子研究问题对应的具体数据分析所获得的结果进行了说明和讨论。这些结果不仅总结了当前的研究活动(如主要研究方向、应用标准、采用的软件和硬件),而且通过提出研究议程指出了现有不足和潜在研究方向。本次审查的结果可用作未来工业4.0及相关主题研究的基础。

关键词

the fourth industrial revolution; industry 4.0; systematic literature review; qualitative research; quantitative research; research agenda

1 引言

在制造业领域,科学技术的进步不断支持着全球工业化的发展。尽管对于什么构成工业革命仍未达成普遍共识,但从技术演进的角度来看,通常确定有四个阶段。前三次工业革命持续了大约两个世纪,分别是:(1)引入水和蒸汽驱动的机械制造设施;(2)通过分工应用电动大批量生产技术;(3)使用电子和信息技术来支持制造的进一步自动化。近年来,随着对物联网(IoT)和信息物理系统(CPS)的研究关注度增加,世界各国政府和行业已经注意到这一趋势,并采取行动从新的工业革命浪潮中受益:

i)从政府计划的角度来看

  • 自2011年以来,美国政府开始了一系列国家级的讨论、行动和建议,名为“先进制造业伙伴关系(AMP)”,以确保美国准备好领导下一代制造业。
  • 2012年,德国政府通过了“2020年高科技战略”行动计划,该计划每年拨出数十亿欧元用于发展尖端技术。作为该计划的十大未来项目之一,“工业4.0”代表了德国在制造业领域的雄心。
  • 法国政府于2013年发起了一项名为“新法国工业”(La Nouvelle France Industrielle)的战略评估,其中34项基于行业的举措被定义为法国的工业政策重点。
  • 2013年,英国政府为其制造业部门提出了一份到2050年的长期蓝图,称为“制造业的未来”。它旨在提供一个重新聚焦和重新平衡的政策,以支持英国制造业在未来几十年的增长和弹性。
  • 2014年,欧盟委员会启动了关于“未来工厂(FoF)”的新公私合作合同(PPP)。该项目属于“地平线2020”项目,计划在7年内(2014年至2020年)提供近800亿欧元可用资金。
  • 2014年,韩国政府公布了“制造业创新3.0”,强调了韩国制造业新飞跃的四个推进战略和任务。
  • 2015年,中国政府发布了“中国制造2025”战略和“互联网+”计划。重点推进制造业十大领域加快中国信息化和工业化进程。
  • 2015年,日本政府通过了第五次科技基础计划,特别关注制造业,以实现世界领先的“超级智能社会”。
  • 新加坡政府已承诺在2016年为其RIE 2020计划(研究、创新和企业)投入190亿美元。在先进制造和工程领域,确定了8个重点行业垂直(国家研究基金2016年)。

(ii)从工业规划的角度来看

AT&T、思科、通用电气、IBM和英特尔于2014年成立了“工业互联网联盟(IIC)”,以催化和协调工业互联网的优先事项和使能技术(Evans和Annunziata 2012)。与此同时,西门子、日立、博世、松下、霍尼韦尔、三菱电气、ABB、施耐德电气和艾默生电气等其他大公司也已经在物联网和CPS相关项目上投入了大量资金。

在我们系统的文献综述过程中,发现了十八篇在此背景下的综述和调查论文。他们根据自己的研究兴趣,运用不同的方法,如叙事文献综述、系统文献综述、访谈调查和问卷调查,给出了答案。但是,可以注意到一些现有的缺陷。

根据他们的研究兴趣,可以发现他们大多集中于综述或调查某一领域的特定研究主题。例如,云技术、工业无线网络、标准、集成技术、虚拟工程、信息系统、公司战略、服务提供、生命周期模型、无处不在的计算技术和基于代理的技术。从一个全面的(compressive)角度来看,这些综述和调查不适合作为我们主要研究问题的答案。(Schmidt, Möhring, etc. 2015; Hozdić 2015; Kang etc., 2016; only shrunf, Ordieres and Miragliotta 2014)打算提供与这次新工业革命相关的总体综述或调查。然而,据我们所知,目前对其研究现状的综述还不是主要的研究重点。其中,要么关注分析专家对可能的影响因素的意见,要么重点研究与智能工厂或智能制造相关的重要概念。

从他们的综述或调查方法可以发现,除了两次访谈调查和一次问卷调查外,大多数都采用了叙事文献综述的方法。这种类型的综述方法能够对大量文献进行评论和总结,并对他们的研究主题得出结论。然而,它通常被认为是比较主观的(例如,基于作者的经验),在数据再现方面比较困难(例如,缺乏明确的方法描述),有时,缺乏定量分析。其中,只有(Adeyeri, Mpofu, and Adenuga 2015)采用了系统文献综述法。但是,它特别侧重于审查基于代理的技术。

因此,我们的工作目的是对第四次工业革命的学术进展进行系统的综述和分析,以便为所述的主要研究问题提供一个更合适的答案。本文将介绍工业4.0主题的系统文献综述,作为更大研究工作的第一阶段成果,其中将包括对与全球第四次工业革命(如工业互联网)相关的其他高级别项目和计划的综述(如美国的工业互联网)。具体的研究子问题如下:

(1) 工业4.0支持哪些特性?

(2) 谁在从事工业4.0的工作,时间和地点?

(3) 主要研究方向和目前的研究方向是什么?

(4) 工业4.0现有的应用领域有哪些?

2 原理与方法

2.1 综述原则

为了确保所有论文都能以较少的主观意见得到一致的评估,定义了三个基本的审查原则

  • 明确的纳入和排除标准。应明确列出收录或排除论文的标准。在本文中,如表1所示,概述了六个主要的纳入和排除标准及其子集。(搜索引擎/无全文/不相关/松散相关/部分相关/紧密相关)

  • 客观的审查策略。每一篇收集到的论文应由至少两名审查员(对工业4.0及其意义有工作知识的研究合作者)审查是否纳入或排除。每个汇总收集数据的集群应由至少两名审查员审查其适用性(applicability, 相关性)。在这两种情况下,如果两名审查员不能达成一致意见,将由第三名审查员做出最终决定。
  • 有证据的数据搜集。 对于需要主观判断的特定数据的收集(例如,一篇被收录的论文主要关注哪个潜在的行动领域?),论文的原始支持文本描述也应作为注释收集到数据库中。

2.2 系统文献综述方法

在过去的几年里,根据不同的需求提出了不同类型的工业4.0学术贡献。为了在这种结果不可预测的情况下提供中立的数据收集和分析,并增强统计和图形数据描述,本研究通过混合方法(定性研究方法和定量研究方法)应用系统文献综述方法进行。此外,本文的结构遵循系统综述和元分析首选报告项目 (PRISMA) 声明中概述的方法[1]。报告系统文献综述不同阶段的 PRISMA 流程图如图1所示(识别/筛选/资格/收录)。

2.2.1 论文收集

为了获得完整的论文集,通过以下四个术语中的每两个之间的运算符的组合来构建搜索字符串:“the fourth industrial revolution”、“the 4th industrial revolution”、“industry 4.0” 和“industry 4.0”。系统检索使用Web of Science、SCOPUS、Science Direct三个电子数据库,收集以下学术研究论文:(1)2016年6月底前在线发表的;(2)在摘要、标题和关键词中至少包含一个已识别的术语;(3)发表在期刊、会议论文集或丛书上;(4)以英文书写。

删除重复项后,进行第一个筛选过程以排除:(1)无法获取全文(WF);(2)只有英文标题、摘要和关键词(SER);或(3)不是学术文章(NR-1)。然后,所有通过初步筛选程序的论文都将通过阅读标题、摘要或全文(如果需要更多信息来得出纳入或排除的结论)进行简要审查。第二次筛选过程被用于排除以下论文:(1)将“第四次工业革命”定义在本工作范围之外(NR-2);或(2)不专注于工业4.0的研究(LR-1−LR-4)。最后,对所有符合条件的论文进行详细研究,并将其分为不同的纳入标准子类别(CR和PR-1−PR-3)。

2.2.2 数据收集

每一篇纳入的论文,收集两类信息并录入数据库

第一类是关于论文的基本数据,包括:(1)论文标题,(2)论文关键词,(3)可以找到论文的电子数据库,(4)论文来源的类别(例如来自期刊或会议)和相关信息。 对于一篇期刊论文,收集了基于SCImago3 的期刊名称、期刊分类和基于Thomson Reuters的期刊影响因子(2015)。对于会议论文,收集了会议名称和会议年份。此外,每篇论文还根据以下四个基于内容的类别进行分类:

  • Review or Survey, 以工业4.0相关的评论或调查为主要内容。
  • Discussion, 将工业4.0 中的挑战、问题或趋势作为主要内容进行讨论,但没有全面解决方案。
  • Theoretical solution, 识别工业4.0 研究问题并提出一些概念或理论解决方案,但没有任何实验室实验或工业应用。
  • Practical solution, 除了概念或理论解决方案外,还提供实验室实验或工业应用作为其贡献的一部分。

第二类是与四个研究子问题相关的具体数据,包括:

  • 对于Q1“工业4.0的有利特性有哪些?”,从收录的论文中收集的数据是:(1)包含“工业4.0”的文本描述(论文标题、摘要和正文中的句子)或“工业4.0”,以及(2)论文标题中包含“Industry 4.0”或“Industrie 4.0”的论文的参考文献。
  • 对于 Q2“谁在从事工业4.0,何时何地工作?”,从收录论文中收集的数据是:(1)作者,(2)发表年份,(3)论文作者所属的机构,以及(4)这些机构的地理位置。
  • 对于Q3“主要研究方向和目前的研究工作是什么?”,从收录论文中收集的数据是:(1)每篇论文包含的研究对象(例如机器人、生产数据或工人),以及(2)每篇论文所关注的研究目的(例如保证人机协作过程中的安全性)。
  • 对于Q4“现有的工业4.0应用领域有哪些?”,数据专门从归类为实用解决方案(Practical solution)的论文中收集:(1)提到的标准和(2)采用的软件和硬件。如果是工业应用,(3)还调查了相应的行业信息。

2.2.3 数据分析

最后,采用定性和定量相结合的方法对收集到的数据进行分析。更具体地说,在对数据进行统计和图形描述等定量分析之前,对收集到的数据进行定性预处理,主要有以下三个步骤。

2.2.3.1 数据降噪

由于以下事实,执行预处理步骤以统一数据表达式:(1)Q1中的引用可能以不同的格式呈现;(2)Q2的作者、机构和地理位置可能会以不同的语言或缩写形式出现;(3)Q4中的标准、软件和硬件可能通过它们的同义词、缩写或单复数形式呈现。

2.2.3.2 定性数据聚类

这种分析方法是通过仔细检查收集的数据(人工)来完成的:(1)理解其上下文含义(例如,从基础数据收集的论文关键词);(2)发现其最初的目标和用途(例如,Q4中的标准、软件和硬件)。然后,根据获得的知识,对收集到的数据进行分组。

2.2.3.3 定性数据分析

名为ATLAS.ti的工具最初用于从Q1中提取文本描述中的词频。接下来,一些特定的词被排除在列表之外,例如介词(例如in、from、by)、定冠词和不定冠词(例如a、an、the)和代词(例如that、this、it)。 接下来,除了单词“industry”、“industrie”和“4.0”之外,使用最终频率列表中排名前25位的名词(每个名词都有单数和复数格式)和形容词进行自动句子编码。然后,对于每个编码,前三个共现词用于构建有意义的名词短语。最后,根据频率总结了与工业4.0更密切相关的前10个名词短语。

3 工业4.0当前研究的特征

根据表1列出的6个主要收录和排除标准及其子集,按PRISMA流程图,被收录或排除的论文数量如图1所示。最终,在346篇有潜力的论文中,224篇进入了数据收集阶段,进行定性和定量分析。本节首先介绍基本数据分析,以提供所收录论文的整体情况(第3.1节),然后给出每个研究子问题的相应答案(第3.2节)。

3.1 基础数据分析:收录论文概述

首先,基于所收集论文的电子数据库,发现收录的224篇论文中,90.2%(202篇)可在Scopus参考数据库中找到。仅在Science Direct、Web of Science参考数据库或两者都能找到的论文分别占4.5%(10篇)、4.9%(11篇)、0.4%(1篇)。

其次,根据内容分类,收录论文中有18篇(8.0%)属于Review或Survey类型,这在第1节中已经介绍和分析过。其余42篇(18.8%)属于讨论类,61篇(27.2%)属于理论类,103篇(46%)属于实践类。

再次,详细分析了(1)收录的期刊和会议论文(第3.1.1节),(2)论文关键词(第3.1.2节)。

3.1.1 期刊和会议论文分析

基于来源类别的数据是根据一篇论文的真实来源和原始来源收集的。这意味着,即使一些会议论文集在电子数据库检索中被归类为期刊,如《Science Direct》中的《proceedings CIRP》,这些论文仍然被归类为会议论文。因此,入选论文中约有29%(64篇)被认定为期刊论文,其余71%(160篇)被认定为会议论文。

根据期刊名称影响因子,发现在收录的64篇期刊论文中,只有62.5%(40篇)发表在具有2015 Thomson Reuters Impact Factor(IF)的期刊上。如图2(a)所示,条形图显示了25种不同期刊以及发表的收录论文数量。 “AT-AUTOM”(AT-Automatisierungstechnik,德国期刊,IF 0.212)和“P IEEE”(Proceedings of the IEEE,美国期刊,IF 5.629)是目前工业4.0研究最常见的两种期刊,分别占IF期刊论文总数的20%(8篇)和10%(4篇)。

 根据期刊分类,图2(b)中的饼图显示了图2(a)中25种期刊的学科领域(顶部)和两个详细学科类别(底部)的覆盖范围。可以看出,计算机科学(41%)和工程(28%)是工业4.0研究的两个最突出的学科领域。

具体而言,一方面,软件(27%)、计算机网络与通信(17%)和计算机科学应用(15%)类别在计算机科学领域排名前三。另一方面,电气与电子工程(29%)、工业与制造工程(24%)和机械工程(19%)在工程领域的占比最高。

根据会议名称会议年份,如图2(c)所示,与工业4.0相关的会议数量从2013年(5场)到2015年(63 场)逐渐增加。更具体地说,图2(d)展示了包含更多工业4.0出版物的四次会议。IEEE新兴技术和工厂自动化国际会议(ETFA)是发表论文最多的会议(2014年5篇论文和2015年13篇论文)。CIRP制造系统会议(CIRP-CMS)排名第二,2014年发表3篇论文,2015年发表7篇论文。紧随其后的是IEEE国际工业信息学会议(INDIN)和IFAC制造信息控制问题研讨会(INCOM)并列第三,前者2013年2篇,2014年2篇,2015年3篇,后者2015年7篇。基于这四个会议的主要主题,可以确定几个相关研究主题:(1)智能制造和自动化技术,(2)未来工厂的使能技术,(3)工业信息学及其应用,以及(4)可持续经济的先进信息和制造系统。

3.1.2 论文关键词分析

关键词代表了论文内容中涉及的重要概念。对收录论文中明确提及的关键词进行了分析,初步了解研究重点、研究领域、赋能技术、采用标准和工业4.0相关特征。首先对收集到的967个关键词进行检验,并将其归类到相应的聚类中。例如,关键词“Cyber-Physical System(s)”、“CPS (s)”、“Industrial-Cyber-Physical System(s)”、“Cyber-Physical Production System(s)”、“CPPS”、“Cyber-Physical Sensor System(s)”、“Cyber-Physical Human System(s)”、“Cyber-Physical Assembly System(s)”和“Cyber-Physical System Platform(s)”被分组为Cyber-Physical System(信息物理系统)集群。

通过对意义密切相关的关键词进行分组,确定聚类。在56个主要集群中,排名前5位的是工业4.0(127个关键词)、网络物理系统(61个关键词)、制造(44个关键词)、智能工厂(30个关键词)和物联网(25个关键词),占全部关键词的29.7%。更具体地说,对生成的集群进行研究和定量测量,并将其分为以下五类

3.1.2.1 智能工厂类别的主要组成部分

智能工厂类别的主要组成部分如图3(a)所示,互联网网络在智能工厂中发挥关键作用,其中无线传感器网络和工业无线网络是两个主要的研究重点。尽管如此,在服务、人为因素、传感器和机器人组件中可找到更平衡的努力,这些组件的发生频率更接近。相比之下,对智能产品和机床组件的关注较少,出现次数较少。

3.1.2.2 产品生命周期类别

图3(b)说明了与产品生命周期(PLC)的不同阶段相关的关键字集群。一方面,正如预期的那样,制造业是主要关键词集群。其中,Assembly、Manufacturing System、Smart Manufacturing、Manufacturing(直接用作关键词)和Production是出现频率最高的五个子集群。另一方面,人们可以推断,在维护、物流、用户体验和供应链集群相关的研究上,投入的精力较少。

3.1.2.3 标准类别

图3(c)说明了有关工业4.0研究中使用的标准的关键字集群。结果发现,大多数标准都与互操作性或网络通信有关。开放平台通信(OPC)、OPC统一架构(OPC- ua)、IEEE 1588(精密时间协议)和IEC 62,439(工业通信网络-高可用性自动化网络)是四种最常用的通信方式。

3.1.2.4 赋能技术类别

如图3(d)所示,几种不同的技术已被应用于支持工业4.0的实现。建模技术和虚拟化与可视化技术是两个最常见的关键字集群。在第一个聚类中,与数据建模相关的关键词占总数(10个关键词)的41.7%。在第二个集群中,增强现实(5个关键词)和虚拟现实(3个关键词)是两个最常被提及的技术。相比之下,与机器学习、3D打印和自然语言处理相关的技术似乎频率较低。

3.1.2.5 特征类别

图3(e)提供了有关工业4.0相关特性的信息。研究发现,当前研究工作主要支持:(1)从过程/行动的角度,自动化(如工业自动化),集成(如系统集成),协作(如人机交互);(2)从能力角度,灵活性(如即插即用)、安全性(如隐私)。相比之下,工业4.0的其他一些特性,如创新、定制和去中心化,并未得到足够重视。

3.2 有特定目的的数据分析:四个子研究问题

3.2.1 工业4.0的赋能特征有哪些?

本研究子问题的数据分析分为两部分:(1)文献的分类和定量测量(参考文献),(2)文本描述的定性数据分析。

3.2.1.1 参考文献分析

对标题中包含“工业4.0”或“工业4.0”的参考文献的分析可以提供一个通用的工业4.0引文的总体总结。共收集到436条引用,首先将其重新格式化为统一的表达式。通过这个数据去噪过程,我们发现了176不同的文献,分别从以下两个角度对这些文献进行研究和定量分析。

从学术角度看(参考文献的类型):根据其来源,图4(a)显示了六个主要生成的出版物集群的比例。一方面,期刊和会议论文、图书章节和图书集群被认为更具学术性,涵盖的参考文献大约不到总参考文献的一半。另一方面,杂志论文和网站内容的集群被认为缺乏学术性,但仍然占据了总参考文献的三分之一左右。

从频次角度来看:如图4(b)所示,工业4.0工作组最终报告的英文版本(64次)和德文版本(27次)被引用次数最多。超过40%的论文使用它来支持他们的工业4.0描述。之后,7篇参考文献:期刊论文2篇、白皮书1篇、报告2篇、会议论文1篇、专著1本。他们被引用了8到17次。其余文献被引频次较低,平均为1.6次。

3.2.1.2 文本描述分析

正如心理学研究所指出的,同句词共现的统计数据,通常表达一些特定的关系,可以作为语义表示的基础。 对包含“Industry 4.0”“Industrie 4.0”的文本描述(句子)进行分析,可以总结与工业 4.0 密切相关的术语。收集到的句子有2,169条。从平均的角度来看,每篇收录的论文都包含大约10个直接描述工业4.0的句子。然而,现实中存在两种极端。6.7%的收录论文(15篇)包含超过30个句子,而40.6%的收录论文(91 篇)包含3个或更少的句子。

从表2中可以看出,左侧的三列显示了25个最常见的词、它们的频率和它们的份额,考虑到收集的句子中的词总数。右侧的三列显示了与第一列中的单词共现的前3个单词,形成了收集的句子。根据它们的组合,总结了前10个有意义的名词短语(及其计数)。首先,出现了始终与工业4.0相关的公认术语,例如网络物理系统 (147)、智能工厂 (132)、工业革命 (108) 和物联网 (101)。接下来,生产系统 (76)、制造系统 (43)、智能制造 (37)、生产过程 (26) 和网络物理生产系统 (25) 等术语证明制造业确实是工业4.0的主要研究领域。最后,通常与美国的努力相关的工业互联网(60)是最常被列举或与工业 4.0 进行比较的术语。此外,还进行了进一步的调查,以根据上述术语中缺失的那些频繁词,发现其他可能的相关名词短语。事实证明,出现了几个有趣的名词短语:一些是更通用的术语,例如工业 4.0 上下文 (87)、工业 4.0 概念 (46) 和工业 4.0 技术 (31)。其他是更具体的术语,例如大数据 (69) 和横向集成 (25)。虽然它们没有出现在前10名的名词短语中,但它们仍然出现了25次或更多。

3.2.2 谁在致力于工业4.0?何时何地?

本子研究问题的数据分析可以总结出近年来参与工业4.0研究的作者机构其地理位置。通过调查发现,德国并不是唯一一个推行工业4.0的国家。它的影响已经首先扩散到欧洲国家,然后扩散到世界各地。更具体地说,这个问题的答案可以分为以下四个方面。

3.2.2.1 从贡献者角度

在收录的224篇论文中,有641不同作者。但大部分(86.0%)只发表过一篇论文。涉及4篇及以上论文的论文较少(3.6%)。亚琛工业大学的Günther Schuh博士和Vicomtech-IK4研究中心的Carlos Toro博士发表了最多的论文。根据Web of Science的论文分类,如图5(a)所示,前者撰写了一篇期刊论文和五篇会议论文,其主要焦点是工业工程。后者在计算机科学研究领域发表了三篇期刊论文和两篇会议论文。

3.2.2.2 从机构的角度

共有233不同的机构。如图5(b)所示,当前的工业4.0学术研究由大学领导(约三分之二),并与公司和研究中心合作。根据发表的数量,发现RWTH Aachen University(19篇论文)、Fraunhofer IOSB(光电、系统技术和图像开发研究所)(10篇论文)和Siemens AG(3篇论文)分别是最著名的3所大学、研究中心和公司。

3.2.2.3 从地理位置的角度

第一,超过83.0%的收录论文(186篇)涉及欧洲机构;其次,亚洲院校共收录论文31篇,占收录论文总数的13.8%。其次是美洲、非洲和大洋洲的论文,分别占8.9%(20篇)、0.9%(2篇)和3.1%(7篇)。特别是如图5(c)所示,列出了按各大洲出版物数量排序的前两到三个国家。作为工业4.0的发起国,预计入选论文中德国院校占比最多(57.1%)。西班牙和奥地利紧随其后,它们是受新工业革命浪潮影响最大的两个欧洲国家。尽管如此,人们发现,作为世界制造业中心之一的中国,对工业4.0的研究也表现出了极大的兴趣。相比之下,除美国和澳大利亚外,美洲、非洲和大洋洲的国家目前才刚刚开始关注工业4.0。

3.2.2.4 从出版年份的角度

尽管工业4.0概念的提出可以追溯到20114,但直到2012年3月成为“高科技战略2020”行动计划的十大官方项目之一后,工业4.0才开始受到关注。随后,由图5(d)可以看出,工业4.0的发文量从2013年(5篇)到2015年(121篇)有了显著的增长。据我们所知,在这些政府的推动下,至少在未来五年内,预计会有越来越多的学术研究不断出现。

3.2.3 主要研究方向和目前的研究方向是什么?

根据第3.2.1节分析,工业4.0工作组的最终报告是目前引用和认可最多的工业4.0参考资料。尽管需要一个关于实现工业4.0更详细的路线图,但它明确指出了三个必要的集成特征和八个优先行动领域。在此基础上,利用收录论文中收集到的数据(研究对象和研究目的),对当前的研究工作进行分析和分类,形成相应的研究方向。

更具体地说,提供了每个集成功能和每个优先行动领域的简要摘要。关于三个必要的集成特征

  • 横向集成:在公司内部(例如入库物流、生产、出库物流、营销)以及多个不同公司(价值网络)之间的制造和业务规划流程的不同阶段使用的各种IT系统的集成。
  • 纵向集成:集成不同层级(例如执行器和传感器层、制造和执行层、生产管理层和企业规划层)的各种IT系统,以提供端到端的解决方案。
  • 端到端数字集成:整个工程过程的集成,以便将数字世界和现实世界集成到产品的整个价值链和不同的公司中,同时也结合了客户需求。

关于八个优先行动领域

  • 标准化和参考架构:开发一套通用标准以支持协作,并开发一个参考架构以提供这些标准的技术描述。
  • 管理复杂系统:制定适当规划(用于要构建的系统)和解释模型(用于现有系统),为管理复杂产品和制造系统提供基础。
  • 提供全面的宽带基础设施:建设可靠、全面、高质量的通信网络,大规模扩展宽带互联网基础设施。
  • 安全和安保:确保生产设施和产品本身不会对人或环境造成危险。同时,保护其中包含的数据免遭滥用和未经授权的访问。
  • 工作组织和设计:对工作组织和设计实施社会技术方法,为工人提供享受更大责任和促进个人发展的机会。
  • 培训和持续专业发展(CPD):以促进学习、实现终身学习和基于工作场所的CPD的方式实施适当的培训策略和工作组织。
  • 监管框架:新创新与现有立法相互适应。公司数据保护、责任问题、个人数据处理和贸易限制。
  • 资源生产率和效率:提高资源生产率和效率。在智能工厂所需的额外资源和潜在的节约之间进行权衡的计算。

从集成特性的角度来看,20.5%的收录论文(46篇论文)至少提到了这三个集成特性中的一个。特别是,如图6(a)所示,纵向集成(45篇论文)和横向集成(39篇论文)的概念得到了更多关注,而端到端集成(23 篇论文)的相关问题的呈现和讨论则较少。而且,上述论文中约有一半只是简单地介绍了这三个工业4.0集成特征的内容,而没有提供相应的综述、讨论或解决方案。

从优先行动领域的角度来看,54.5%的收录论文(122篇论文)明确提出了他们在八个优先行动领域之一的贡献。更具体地说,图6(b)说明了当前研究工作的分布。可以看出,标准化和参考架构、资源生产率和效率是吸引大部分研究努力的两个领域。在这之后,工作组织与设计、管理复杂系统、提供全面的宽带基础设施和安全保障等领域的研究成果在彼此之间的分布更加平衡。此外,与培训和继续专业发展有关的研究工作最近开始出现。与上述所有其他优先行动领域相比,监管框架最终是最被忽视的一个。

另外,对其余45.5%的收录论文(102篇)进行了进一步调查,对它们进行了分类。如图6(c)所示,四分之一的论文给出了一般性的贡献,例如提出了工业4.0实现的框架(11篇论文),综述了与工业4.0相关的关键概念(3篇论文),讨论了工业4.0可能面临的挑战(11篇论文)。其他3/4则专门为工业4.0的具体问题做出贡献。

3.2.4 现有的工业4.0应用领域有哪些?

本子研究问题的数据分析主要是基于103篇被分类为Practical Solutions(实用解决方案)的论文。全文分为两部分:(1)对上述标准、软件、硬件进行调查和分类;以及(2)实验室实验和工业应用分析。

3.2.4.1 标准、软件、硬件的调查与分类

为了使标准的分析更加完整,还考虑了从关键词分析中发现的标准和两篇关于工业4.0领域标准的文献综述。共确定了138种不同的标准标准多样性的角度来看,如图7(a)所示,31.8%的标准与连接和网络有关,23.9%的标准与数据格式有关,15.2%的标准侧重于安全和隐私。出现频率的角度来看,图7(b)说明了出现在10多篇论文中的标准。以太网、互联网协议(IP)和射频识别(RFID)是与连接和网络相关的三个最常见的标准。与关键字分析的结果相似,OPC和OPC- ua似乎被普遍接受为“事实上的”机器对机器(M2M)通信标准。在数据格式标准中,可扩展标记语言(eXtensible Markup Language, XML)、统一建模语言(Unified modeling Language, UML)和AutomationML是三个最常被提及的标准。此外,可编程控制器的IEC 61131是被提及最多的领域和应用特定标准。

软件和硬件的分析只考虑了明确提到的特定品牌或型号(如谷歌Glass, Linux, ARM9),而忽略了在一般意义上描述这些对象的一般概念(如智能眼镜,操作系统,处理器)。177个结果中,仅提及1次(76.8%)或2次(15.2%)的占92.0%以上。7(c)显示了出现在3篇或3篇以上论文中的硬件和软件的结果。Linux和Microsoft Windows是目前使用最多的两种电脑操作系统。Android是最受欢迎移动操作系统。MATLAB是数字建模和仿真最常用的软件。此外,对于工业4.0原型实现,作为单板计算机,树莓派是最受欢迎的选择。

3.2.4.2 实验室实验和工业应用的分析

在被分类为“Practical Solutions”的论文中,有95.1%(98)以上的论文以实验室实验为贡献内容。更具体地说,如图7(d)所示,这些实验的前三类分别是:(1)原型化一个设备(20.4%),如柔性输送机、即插即用机器、自适应移动机器人或机床传感系统;(2)软件或其架构原型(17.3%),例如基于人体工程学反馈的工人协助解决方案、基于角色的安全保护解决方案、去中心化的数据采集架构或运行时自动化软件升级方法;(3)设备网络的原型或分析(13.2%),如延迟感知无线传感器网络(WSN),无线传感器网络的链路调度方案,无线传感器网络的有效频谱共享,或超低功耗的无线传感器网络。

此外,由表3可以看出,提供工业应用实例的论文仅占论文总数的4.9%(5)。研究发现:(1)2014 - 2016年工业应用数量持续增长;(2)除了一篇论文没有说明开发应用程序的公司名称,其他四家公司都来自德国;(3)其中一家公司提供物流服务,其他四家公司都来自制造业;(4)两篇论文提出了在管理层面优化规划过程的解决方案,两篇论文侧重于开发用于数据分析和管理的信息系统,一篇论文提供了改善制造单元的技术操作的答案。

4 启示:一个研究议程

从2013年到2015年,与工业4.0相关的会议和学术出版物的数量呈指数级增长。第四次工业革命无疑已成为制造业领域的重要课题之一。至少在接下来的5年里,它将吸引越来越多的研究工作。结合第3节定性和定量分析的结果,本节从情境视角、协作视角、研究工作视角和应用视角提出了识别知识差距和未来研究重点的研究议程

4.1 情境视角

在这篇系统性文献综述发现的所有论文中,“第四次工业革命”最早的介绍可以追溯到1988年,该论文介绍了科学家参与将一项发明转化为创新的生产团队的情况。此后,在2012年之前的几十年里,这一概念也被用来表示纳米技术的发展和应用。近年来,随着高水平计划和项目数量的迅速增加(其中一些在第1节中被引入,世界各国政府和行业都在执行),这一概念随后被更普遍地认为是将CPS技术集成到制造和物流中以及在工业流程中使用物联网。因此,第四次工业革命研究的第一个关键项目,更具体地说是工业4.0的学术研究,必须是准确识别和理解“工业4.0的赋能特征是什么?”

为此,3.2.1节的研究结果可以提供以下两点建议:(1)工业4.0工作组的最终报告作为被引用最多的参考文献,可以自信地作为对工业4.0定义的引用和指导;(2)对发现的与工业4.0密切相关的名词短语进行进一步的研究,可以准确地提高对它们具体关系的适当理解。此外,即使找到了最被接受的引文,但其与其他文献的频率差距仍然很大。目前仍缺乏期刊、会议或书籍中普遍认可的学术论文。

4.2 协作视角

在这个新的工业革命时代,德国的“工业4.0”和美国的“工业互联网”、欧盟委员会的“未来工厂”是被提及或比较的三个提案。例如,在工业 4.0 的收录论文中,“工业互联网”出现在31篇(13.8%)中,“未来工厂”出现在12篇(5.4%)中。相比之下,英国的“制造业未来”、法国的“La Nouvelle France Industrielle”、美国的“先进制造伙伴关系”和“Made in来自中国的《中国 2025》很少出现。它们分别仅出现在0.9%(2篇论文)、1.4%(3篇论文)、1.4%(3篇论文)和 1.8%(4篇论文)中。因此,为避免误解,在进行调查之前,应充分了解这些计划或项目的背景和情况。对于工业4.0学术研究,从协作角度获取其背景知识的一种解决方案是通过研究“谁在从事工业4.0,何时何地工作?”

3.2.2节给出的结果展示了近年来有相对较多学术出版物的贡献者(作者)、机构(大学、研究中心或公司)和国家的列表。这些数据可以作为进一步调查的基础,有两种可能:(1)进一步分析他们的研究专长,找出与新工业4.0学术研究最相关的专业知识,并构建科学合作伙伴关系建议书;(2)进一步分析了他们的合著网络,分别从贡献者水平、机构水平和国家水平进行分析。发现可以用来回答各种各样的合作模式问题(例如,网络中那些贡献者之间的典型距离是什么,以及随着时间的推移,合作模式如何在不同的主题之间变化?)

4.3 研究工作视角

自2011年在汉诺威博览会上首次宣布“industrie 4.0”以来,这一术语引起了越来越多的关注。然而,尽管工业4.0工作组在2013年发布了他们的最终报告,提供了第四次工业革命的愿景、集成特征、优先行动领域和示例应用,但实现工业4.0的详细路线图仍然缺失。正因如此,在学术文献中,根据自己的需要提出了不同类型的研究贡献。这种情况可能会通过2016年初发表的一些近期研究工作得到解决,例如:(1)系统性文献综述,其中确定了实施工业4.0解决方案的四个设计原则;(2)工业4.0状态报告(VDI/VDE 2016),其中介绍了技术资产建模的基本概念、它们的生命周期以及它们在信息世界中的管理。因此,发现现有工业 4.0研究中研究工作不足的解决方案之一是分析“主要研究方向和当前研究工作是什么?”

通过第3.2.3节的研究结果,可以发现:一方面,(1)已经吸引了更多研究的研究方向,如标准化与参考架构、资源生产力与效率、纵向集成和横向集成,另一方面(2)仍然缺乏或不足的研究方向,如监管框架和端到端数字集成。此外,另一件需要记住的关键事情是,即使一些研究方向在工业4.0最终报告中没有正式列为优先行动领域,但也可以发现某些研究努力。如开展数据科学相关研究(11篇),例如:实时数据分析、数据集成、大数据分析等。如现有技术升级(6篇论文),例如:可编程逻辑控制器、生产机械、工业机器人等,以满足工业4.0的需求。此外,研究工作还致力于支持与工业4.0领域相关的生产系统的管理,如战略管理、决策、位置跟踪、可重构和可持续性。

4.4 应用视角

学术研究通常被认为是整个国家努力持续活力的基本作用。工业4.0学术研究也是第四次工业革命完善和加强过程中不可或缺的一部分。但需要注意的一个事实是,由于一系列因素,研究贡献有时难以在实践中落地。从参与角度来看,来自公司的工业工程师很少参与学术研究出版物(根据第3.2.2节,发现的机构中只有17.1%是公司)。从实施的角度来看,由于可能的好处不明确、缺乏明确的实施细节以及所需的投资似乎很大,行业仍然对实施这些新技术持怀疑态度。从标准化的角度来看,仍然缺乏普遍接受的标准、软件和硬件。例如,工业4.0参考架构模型 (RAMI 4.0) (ZVEI 2015) 中的三个推荐标准,即IEC 62,890 for Life Cycle and Value Steam、IEC 61512 和 IEC 62264 for Hierarchy Levels仍未被广泛认为是工业4.0标准。它们分别只出现在1篇论文、2篇论文和4篇论文中。因此,为了更有效地将工业4.0研究提案转化为工业4.0实施,解决方案之一是从“现有的工业4.0应用领域有哪些?”做一个总结。

为此,3.2.4节的研究结果可以为以下方面提供系统的科学证据:(1)选择更普遍认可的标准,如产品标签的RFID,用于M2M通信的OPC-UA,以及用于数据格式的AutomationML,(2)推荐更常用的软件和硬件,如树莓派支持低成本实验的开发,采用OPC-UA,模拟工业多代理系统,创建无线传感器网络,以及实现工业物联网(IIoT)。此外,这一分析也证实和强调了工业4.0实验室实验(95.1%)与工业应用(4.9%)之间的巨大差距。

5 结论

本研究的主要目的是系统地综述和分析与第四次工业革命相关的主题的学术进展,以提供对该主题的过去、现在和未来的见解。作为第一阶段的结果,本文在对纳入论文的一般数据分析和每个研究子问题对应的具体数据分析的基础上,对工业4.0主题进行了系统的文献综述。工业4.0的概述首先通过(1)列举出版工业4.0相关内容的著名期刊和热门会议列表,(2)根据Scimago分类确定工业4.0的两个最相关的主题领域及其子类别,以及 (3) 基于关键字分类说明工业4.0的重要性。然后,还特别关注了以下四个方面(1)通过参考文献发现最常见的公认的工业4.0引用,并通过词共现统计列出其密切相关的概念;(2)近年来从事工业4.0研究的作者、机构及其地理位置的概况;(3)识别现有的研究工作以及当前文献中最近被忽视的领域;(4)工业4.0实施中出现频率较高的标准、软件和硬件清单。最后,通过对文献的系统综述,提出了一个研究议程,总结了这篇综述对未来工业4.0相关工作的影响。

在考虑本研究的结果时,应该注意到几个局限性。首先,论文收集自最大的同行评议文献摘要和引文数据库(Scopus),以及其他两个多学科数据库(Science Direct和Web of Science)作为补充。其次,由于搜索标准将收集的论文语言限制为英语,现有的以其他语言发表的工业4.0研究被排除在外。从完整性的角度来看,如果考虑到更多的数据库和更多的语言,这项审查将更加全面。然而,作为一个系统性文献综述,为了使综述具有可行性,应该明确适当的限制条件。系统检索3个电子数据库共收录论文349篇,其中收录224篇,这一数字在定量文献综述建议范围内。值得注意的是,工业4.0的大部分学术出版物都是用英语撰写的,例如,Scopus上超过89%的期刊、会议或丛书的学术论文都是用英语撰写的。

总之,尽管有一些局限性,正如本节所讨论的,但本系统性文献综述通过分析工业4.0的学术进展(过去和现在),报告了第四次工业革命的现状。它还强调了基于第 4 节中文献空白的一些潜在方向的建议(未来)。下一阶段的研究工作将重点对其他命题(如工业互联网、未来工厂、中国制造2015)的学术进展进行综述和比较。

 

[1] Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement[J]. Annals of internal medicine, 2009, 151(4): 264-269.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

博士僧小星

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值