问题描述
你被给定一个 m × n 的二维网格,网格中有以下三种可能的初始化值:
-1 表示墙或是障碍物
0 表示一扇门
INF 无限表示一个空的房间。然后,我们用 231 - 1 = 2147483647 代表 INF。你可以认为通往门的距离总是小于 2147483647 的。
你要给每个空房间位上填上该房间到 最近 门的距离,如果无法到达门,则填 INF 即可。
示例:
给定二维网格:
INF -1 0 INF
INF INF INF -1
INF -1 INF -1
0 -1 INF INF
运行完你的函数后,该网格应该变成:
3 -1 0 1
2 2 1 -1
1 -1 2 -1
0 -1 3 4
分析
此题本质上就是一个层序遍历,我们将门的位置作为第二层的根节点,门的上下左右的位置(如果存在的话)作为它的子节点,把二维数组转换为一个树的结构体,然后对树结构体层序遍历即可;
对例题的转换如下
代码如下
class Solution {
/*
* 定义门与墙的常量,方便比较
*
*/
private static final int INF = 2147483647;
private static final int DOOR = 0;
/*
* 定义上下左右四种移动方式
*
*/
private static final List<int[]> ACTION = Arrays.asList(
new int[] {1,0},//下
new int[] {-1,0},//上
new int[] {0,1},//右
new int[] {0,-1}//左
);
public void wallsAndGates(int[][] rooms) {
LinkedList<int[]> tree = new LinkedList<>();//定义一个链表来存储遍历结果
int horizontal_length = rooms.length;//定义数组的行数
/*
* 如果行数为0,说明这个二维数组不存在,直接结束
*
*/
if(horizontal_length == 0) {
return;
}
int vertical_length = rooms[0].length;//定义数组的列数
/*
* 找到门的位置,成为最初的根节点存储到tree中
*
*/
for(int i=0;i<horizontal_length;i++) {
for(int j=0;j<vertical_length;j++) {
if(rooms[i][j] == DOOR) {
tree.add(new int[] {i,j});
}
}
}
while(tree.isEmpty()==false) {
int[] node = tree.poll();//获得tree中的第一个元素,第一次执行该语句得到第一个门(也就是获得一个根节点)
int m = node[0];
int n = node[1];
/*
* 执行上下左右四种操作
*
*/
for(int[] action:ACTION) {
int p = m + action[0];
int q = n + action[1];
/*
* 如果执行完这四种操作后,超出了边界,又或者遇到了墙,又或者执行完操作的结果已经被访问过了,那么保持不变
*/
if(p<0 || q<0 || p>=horizontal_length || q>=vertical_length || rooms[p][q]!=INF) {
continue;
}
/*
* 如果执行操作后,找到了新的空房间,那么令二维数组指向的值=上一层根节点的值+1,并把新的空房间加入到tree中,直到没有新的空房间为止
*/
rooms[p][q] = rooms[m][n] + 1;//新的空房间赋值后就不等于INF了
tree.add(new int[] {p,q});
}
}
}
}
此题的代码是我参照别人的,加入了自己的注解,如果有不对的地方欢迎指正。
代码摘自:https://www.cnblogs.com/liguo-wang/p/11120777.html