数据分析基础套路与实战
数据分析的基本流程
- 确定数据分析的目标与分析框架;
- 数据采集与预处理;
- 数据分析;
- 业务需求建模
- 完善数据分析报告;
确定数据分析的目标与框架
1、如何高效的拆解业务需求,确定数据分析目标
业务需求的拆分分为两部分:第一是把需求拆分到业务指标;第二是对每个指标拆分分析。
业务指标也分为核心指标和底层指标,电商运营的核心优化指标是GMV,但不同业务问题可以从人货场、链路转换、生命周期等不同角度拆解出细分指标用于优化。
指标拆分分析的常用思路与方法:
-
以DAU变动为例分析
(1)按短期和长期因素拆分
此处DAU上升现将其拆分为长期因素和短期因素,长期因素表现在用户量的长期趋势,如一年来app的日活指标都是呈上升态,可估算5月到7月按既往趋势的DAU增长量(换算为量而非百分比),比如使用移动平均等预测手法计算;在剔除了趋势增长量的基础上,考虑短期因素,考虑在7月和5月间有无重大社会事件、商业事件,社会事件可以是某种舆论造成App的关注度提升,商业事件可考虑商业合作和商业活动(618),可以以各月的舆论热度作为对比的指标。
(2)按内外部变化拆分
日活的变化第一是产品本身某个改动点获得认可,可以通过abtest的方式来检验,指标包括用户研究类(活跃用户)、内部的新版本,运营活动;外部变化是市场环境