数据分析的基础套路与实战(一)——业务拆解框架

本文介绍了数据分析的基础流程,强调了确定目标与框架的重要性。通过电商运营实例,详细阐述了业务需求的拆解,如GMV的多角度分析,并提及了京东销量预测的评估指标wMAPE。此外,讨论了常用业务框架如AIPL和RFM模型,以及电商漏斗模型在用户行为分析中的应用。最后提到了数据采集与预处理的关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据分析基础套路与实战

数据分析的基本流程

  1. 确定数据分析的目标与分析框架;
  2. 数据采集与预处理;
  3. 数据分析;
  4. 业务需求建模
  5. 完善数据分析报告;

确定数据分析的目标与框架

1、如何高效的拆解业务需求,确定数据分析目标
业务需求的拆分分为两部分:第一是把需求拆分到业务指标;第二是对每个指标拆分分析。
业务指标也分为核心指标和底层指标,电商运营的核心优化指标是GMV,但不同业务问题可以从人货场、链路转换、生命周期等不同角度拆解出细分指标用于优化。

指标拆分分析的常用思路与方法:

  • 以DAU变动为例分析
    (1)按短期和长期因素拆分
    此处DAU上升现将其拆分为长期因素和短期因素,长期因素表现在用户量的长期趋势,如一年来app的日活指标都是呈上升态,可估算5月到7月按既往趋势的DAU增长量(换算为量而非百分比),比如使用移动平均等预测手法计算;在剔除了趋势增长量的基础上,考虑短期因素,考虑在7月和5月间有无重大社会事件、商业事件,社会事件可以是某种舆论造成App的关注度提升,商业事件可考虑商业合作和商业活动(618),可以以各月的舆论热度作为对比的指标。
    (2)按内外部变化拆分
    日活的变化第一是产品本身某个改动点获得认可,可以通过abtest的方式来检验,指标包括用户研究类(活跃用户)、内部的新版本,运营活动;外部变化是市场环境࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值