将问题分解,通过求解局部性的小问题来解开与原本的问题。这种技巧称为分治法,我们在很多算法中都能看到。这个算法的步骤如下:
1.将问题"分解“成局部问题
2.递归地求解局部问题
3.将局部问题地解”整合“,解决原问题
穷举搜索
例题:
现有长度为n地数列A和整数m。请编写一个程序,判断A中任意几个元素相加是否能够得到m。A中每个元素中能使用1次.
数列A以及用作问题的q个m,由外界输入,请对每个问题输出yes或no
输入:第1行输入n,第2行输入代表A的n个整数,第3行输入q,第4行输入q个整数m。
输出:输出各问题的答案,如果A中元素相加能得到mi则回答yes,反之回答no
限制:
n<=20
q<=200
1<=A的元素<=2000
1<=mi<=2000
#include<iostream>
#define MAXN 2000
using namespace std;
int n,A[MAXN];
bool solve(int i,int m){
if(m == 0) return true;
if(i == n) return false;
return (solve(i+1,m) || solve(i+1,m-A[i]));
}
int main(){
int m,temp;
cin>>n;
for(int i = 0;i < n;i++)
cin>>A[i];
cin>>m;
for(int i = 0;i < m;i++){
cin>>temp;
if(solve(0,temp)) cout<<"yes"<<endl;
else cout<<"no"<<endl;
}
return 0;
}
讲解
设solve(i,m)为”用第i个元素后面的元素能得出m时返回true“的函数,这样一来solve(i,m)就可以分解为solve(i+1,m)和solve(i+1,m-A[i])这两个更小的局部问题。这里减去A[i]表示”使用第i个元素“。我们只要将其递归,就可以解开原问题solve(0,m)。
检查所有组合需要在递归函数中重复调用两个递归函数,算法复杂度为O(2^n),因此不适用于n较大的问题。