wav2lip
advanceyue
这个作者很懒,什么都没留下…
展开
-
AV offset: -1 Min dist: 9.100 Confidence: 4.341 tensor(-1) tensor(9.0999) tensor(4.3406)
后面的数列是对应每一帧的置信度。这些数字是模型为每一帧音频和视频同步评估出的信任度。通常,数字越高,表示模型对相应帧同步的置信度越高。每一个具体的数值和它们的含义可能会因为具体的同步算法和模型而有所不同。在处理这些数据时,你需要根据算法或模型的具体文档来理解这些数值。表示音频和视频之间的偏移量。正数则可能表示音频落后于视频。是最小距离,这可能表示音频和视频同步最佳的点的评分或距离。这个值越小,表示音频和视频越同步。这段信息似乎是从音视频同步检测的脚本中获得的。是模型对音视频同步结果的总体置信度。原创 2023-06-28 11:53:11 · 254 阅读 · 0 评论 -
Batch_size一些说明跟作用
因此,选择合适的Batch_size对于模型的训练和性能是非常重要的。当Batch_size增大时,每个step需要处理更多的样本,在同样的时间内完成一个epoch的训练次数会减少,从而导致训练速度变慢。一般来说,可以从小到大尝试不同的Batch_size,观察训练过程中的loss变化和模型性能,选择使得loss下降稳定且模型性能最佳的Batch_size。4. 数据集大小:对于较小的数据集,使用较小的Batch_size可能会导致模型欠拟合,而较大的Batch_size可能会导致模型过拟合。原创 2023-06-21 22:20:23 · 1869 阅读 · 0 评论 -
处理好的mel_spectrograms 都放到内存中,方便下次使用
请注意,由于我们现在使用的是列表而不是字典,您需要相应地更新。列表,从而避免了覆盖已计算值的问题。方法,以便它接受一个额外的参数。创建一个列表,然后将其传递给。这样,所有子进程都将使用同一个。列表中,以便在需要时检索它。全局变量的地方替换为。原创 2023-05-11 17:55:08 · 240 阅读 · 0 评论