二分搜索,呵呵

二分搜索 呵呵


写在前面的话:

二分搜索原理看似都懂,但是真的让我敲起来,我还真不敢保证写的一定没有bug,甚至陷入bug里不知道怎么改呢.
其实,二分法真的不是那么简单,尤其是二分的各个变种.下面一次介绍各种变种二分法,并且加上我的总结吧.

1. 基本二分法

在一个排好序的数组里查找一个key值.

int search(int *arr, int n, int key)
{
    int left = 0, right = n-1;
    while(left<=right) {
        int mid = left + ((right - left) << 1);
        if (arr[mid] == key) return mid; 
        else if(arr[mid] > key) right = mid - 1;
        else left = mid + 1;
    }
    return -1;
}

如果条件变化成, 数组中的数据可能重复,要求范围等于key值最小的下标,或者找出数组中第一个大于(或等于)key值的元素下标,请看下面

2. 找出第一个与key相等的元素
int searchFirstEqual(int *arr, int n, int key)
{
    int left = 0, right = n-1;
    while(left<=right) {
        int mid = (left+right)/2;
        if(arr[mid] >= key) right = mid - 1;
        else if(arr[mid] < key) left = mid + 1;
    }
    if( left < n && arr[left] == key) return left;
    return -1;
}
3. 找出最后一个与key相等的元素
int searchLastEqual(int *arr, int n, int key)
{
    int left = 0, right = n-1;
    while(left<=right) {
        int mid = (left+right)/2;
        if(arr[mid] > key) right = mid - 1;
        else if(arr[mid] <= key) left = mid + 1; 
    }
    if( right>=0 && arr[right] == key) return right;
    return -1;
}
4. 找出第一个大于或等于key的元素
int searchFirstEqualOrLarger(int *arr, int n, int key)
{
    int left=0, right=n-1;
    while(left<=right) {
        int mid = (left+right)/2;
        if(arr[mid] >= key) right = mid-1;
        else if (arr[mid] < key) left = mid+1;
    }
    return left;
}
5. 找出第一个大于key的元素
int searchFirstLarger(int *arr, int n, int key)
{
    int left=0, right=n-1;
    while(left<=right) {
        int mid = (left+right)/2;
        if(arr[mid] > key) right = mid-1;
        else if (arr[mid] <= key) left = mid+1;
    }
    return left;
}
6. 找出最后一个小于或等于key的元素
int searchLastEqualOrSmaller(int *arr, int n, int key)
{
    int left=0, right=n-1;
    while(left<=right) {
        int m = (left+right)/2;
        if(arr[m] > key) right = m-1;
        else if (arr[m] <= key) left = m+1;
    }
    return right;
}
7. 找出最后一个小于key的元素
int searchLastSmaller(int *arr, int n, int key)
{
    int left=0, right=n-1;
    while(left<=right) {
        int mid = (left+right)/2;
        if(arr[mid] >= key) right = mid-1;
        else if (arr[mid] < key) left = mid+1;
    }
    return right;
}

我的总结:
  1. 各种二分有一些代码部分是不变的,记住就好.也很容易记住.
int search(int *arr, int n, int key)
{
    int left=0, right=n-1;
    while(left<=right) {
        int mid = (left+right)/2;
        if(arr[mid] /****/ key) right = mid-1;
        else if (arr[mid] /****/ key) left = mid+1;
    }
    return /****/;
}

其中除了3处/****/之外,其他部分可以说是模板,很简短,用的时候敲出来就行了

  1. 返回值问题:
    记住left和right是key值存在的范围. 所以当要找最后一个等于key时,必然返回right . 当要找最大的小鱼key值时, 必然返回left
  2. a[mid] == key 时, 到底是改变left还是right?
    这里要用 "不会更坏的"想法来理解比较好.
    比如,当我们知道要 返回值 和 条件是否包括等于 后,我们再来看等号如何处理.
    比如:条件包括等号,返回值为left . 那么就意味着不取等号那种情况后所做的操作不可以将left变化成mid+1,因为一旦这样变化,最终返回left的时候不再可能是mid,而mid是符合条件(包括等于)要求的 . 这肯定是不合理的.所以等号绝不是加在这里 .

说到这里,我们的返回值和等号加在哪里,2个问题都解决了,就可以写完美的二分法啦!
gaoqing.jpg

转载于:https://www.cnblogs.com/shawn-ji/p/5704314.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值