- 博客(61)
- 收藏
- 关注
原创 “全网最全”LLM推理框架集结营 | 看似微不足道,却决定着AIGC项目的成本、效率与性能!
TensorRTLLM包含用于创建执行这些TensorRT引擎的Python和C++运行时的组件。它还包括一个与NVIDIA Triton推理服务器集成的后端;为LLM服务的生产质量体系。使用TensorRT LLM构建的模型可以在各种配置上执行,从单个GPU到具有多个GPU的多个节点(使用Tensor并行性和/或管道并行性)。
2024-04-18 21:50:03 4206 1
原创 YOLOv5算法详解
目录1、需求解读2、YOLOv5算法简介3、YOLOv5算法详解3.1 YOLOv5网络架构3.2 YOLOv5实现细节详解3.2.1 YOLOv5基础组件3.2.2 输入细节详解1、需求解读 YOLOV4出现之后不久,YOLOv5横空出世。YOLOv5在YOLOv4算法的基础上做了进一步的改进,检测性能得到进一步的提升。虽然YOLOv5算法并没有与YOLOv4算法进行性能比较与分析,但是YOLOv5在COCO数据集上面的测试效果还是挺不错的。大家对YOLOv5算法的创新性半信半疑,有的人对其持肯定态
2021-02-12 23:11:56 215300 20
原创 YOLOv4算法详解
YOLOv4: Optimal Speed and Accuracy of Object Detection-论文链接-代码链接目录1、需求解读2、YOLOv4算法简介3、YOLOv4算法详解3.1 YOLOv4网络架构3.2 YOLOv4实现细节详解3.2.1 YOLOv4基础组件3.2.2 输入端细节详解3.2.3 基准网络细节详解3.2.3 Neck网络细节详解3.2.4 Head网络细节详解1、需求解读 作为一种经典的单阶段目标检测框架,YOLO系列的目标检测算法得到了学术界与工业界们的广泛
2021-02-10 22:02:03 33028 5
原创 CenterNet算法详解
Objects as Points-论文链接-代码链接目录1、需求解读2、CenterNet算法简介3、CenterNet算法详解3.1 CenterNet网络结构3.2 CenterNet实现细节详解3.2.1 训练阶段Heatmap生成3.2.2 Heatmap上应用高斯核3.3 CenterNet损失函数3.3.1 Heatmap损失函数3.3.2 中心点偏移损失函数3.3.3 目标长宽损失函数3.4 CenterNet推理阶段4、CenterNet网络代码实现5、CenterNet效果展示与分析5
2021-02-08 21:04:06 34241 6
原创 SoftPool算法详解
Refining activation downsampling with SoftPool-论文链接-代码链接目录1、需求解读2、SoftPool算法简介3、SoftPool算法详解3.1 池化算法变种3.2 SoftPool计算![在这里插入图片描述](https://img-blog.csdnimg.cn/20210123154330256.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cH
2021-01-23 16:33:14 11081 27
原创 RepVGG算法详解
RepVGG: Making VGG-style ConvNets Great Again-论文链接-代码链接目录1、需求解读2、RepVGG算法简介3、RepVGG网络架构详解3.1 推理阶段Op融合细节详解3.2 不同配置版本的ResVGG网络4、RepVGG算法实现步骤5、RepVGG算法效果展示与分析6、总结与分析参考资料注意事项1、需求解读 通过总结,你可能会发现计算机视觉中的多种不同任务的网络架构大致都可以分为3个通用的模块,具体包括:通用Backbone网络、任务特定网络和任务头网络,
2021-01-16 12:01:59 32565 13
原创 计算机视觉各领域前沿算法积累
目录一、目标检测二、目标跟踪三、人像检索1、faiss2、HNSW一、目标检测二、目标跟踪三、人像检索1、faiss github链接。Faiss是一个高效的相似性搜索和密集向量聚类库。它包含的算法可以搜索任意大小的向量集,最多可以搜索不适合RAM的向量集。它还包含用于计算和参数调整的支持代码。Faiss用C++编写,带有Python/NuMPy的完整包装。一些最有用的算法是在GPU上实现的。它是由Facebook人工智能研究开发的。2、HNSW github链接。Hierarchical
2020-06-19 16:28:03 5137
原创 一步一步带你训练自己的SSD检测算法
目录一、前言二、实现细节1、前提条件2、数据标注2.1 Labelme2.1.1 工具特点简介2.1.2 工具安装2.1.3 工具使用简介2.2 LabelImg2.2.1 工具安装2.2.2 工具使用简介3、标签预处理3.1 PASCAL VOC数据集格式详解3.2 构造新的PASCAL VOC数据集3.2 COCO数据集格式详解4、搭建SSD运行环境5、修改代码训练网络5.1 代码架构详解5....
2020-02-16 17:42:48 7199 9
原创 低光照图像增强算法汇总
目录1、场景需求2、Retinex算法2.1 Retinex算法简介2.2 Retinex核心代码实现2.3 Retinex算法效果展示与分析3、LIME算法3.1、LIME算法简介3.2、LIME核心代码实现3.3、LIME算法效果展示与分析4、RetinexNet算法4.1 RetinexNet算法简介4.2 RetinexNet网络详解4.3 RetinexNet核心代码实现4.4 Reti...
2020-02-15 19:54:02 29505 14
原创 模型量化详解
目录1、模型量化是什么?2、为什么需要做模型量化?3、模型量化动机是什么?4、模型量化分类4.1 线性量化4.1.1 对称量化4.1.2 非对称量化4.2 逐层量化、逐组量化和逐通道量化4.3 在线量化和离线量化4.4 比特量化4.5 权重量化和权重激活量化5、模型量化原理详解5.1 原理详解5.2 具体案例6、模型量化实现步骤7、Pytorch模型量化详解7.1 简介7.2 pytorch量化工...
2019-12-01 22:23:12 53259 21
原创 CharNet算法详解
Convolutional Character Networks-论文链接-代码链接目录1、需求解读2、CharNet算法简介3、CharNet网络架构详解3.1 字符检测分支详解3.2 文本检测分支详解3.3 迭代字符检测4、CharNet算法实现步骤5、CharNet算法效果展示5.1 主观效果展示5.2 客观效果展示![在这里插入图片描述](https://img-blog.csdnimg...
2019-11-24 11:03:58 4323 2
原创 混合精度训练-Pytorch
目录1、需求解读2、F16和FP32的区别与联系3、F16优点简介4、F16缺点简介5、混合精度训练代码实战5.1 代码实现5.2 代码解析6、F16训练效果展示7、个人总结参考资料注意事项1、需求解读 作为一名算法工程师,我们经常会遇到训练网络的事情,当前训练网络的整个过程基本上都是在N卡上面执行的,当我们的数据集比较大时,训练网络会耗费大量的时间。由于我们需要使用反向传播来更新具有细微变...
2019-11-24 11:03:20 11192 3
原创 TVN算法详解
Tiny Video Networks-论文链接目录1、需求解读2、TVN算法贡献3、TVN算法简介4、TVN算法详解4.1 NAS简介4.2 TVN搜索空间详解4.3 TVN搜索策略详解5、TVN算法实现步骤6、TVN算法性能评估7、总结参考资料注意事项1、需求解读 随着大数据和5G技术的发展,我们的生活已经开始从原始的图片时代逐渐转向视频时代,代表性的一个企业就是今日头条,它通过小视频...
2019-11-16 18:38:59 1525 1
原创 YOLT遥感图像检测算法详解
You Only Look Twice: Rapid Multi-Scale Object Detection InSatellite Imagery-论文链接-代码链接目录1、需求解读2、遥感图像处理和普通图像处理的区别与联系3、YOLT检测算法分析3.1 遥感图像中的视觉挑战3.2 YOLT检测算法简介4、YOLT检测算法实现详解4.1 YOLT检测算法网络架构简介4.2 YOLT检测算法如...
2019-11-03 22:45:45 8311 2
原创 适合ARM 的轻量级人脸检测算法汇总
目录1、场景需求2、libfacedetection2.1 [Github链接](https://github.com/ShiqiYu/libfacedetection)2.2 算法简介2.3 算法效果展示2.4 算法性能展示3、Ultra-Light-Fast-Generic-Face-Detector-1MB3.1 [Github链接](https://github.com/Linzaer/U...
2019-10-26 17:31:26 7639
原创 基于SSD的自动路径规划算法
目录1、场景需求2、路径规划算法简介2.1 、PRM算法简介2.2、RRT算法简介3、基于SSD的自动路径规划算法简介4、基于SSD的自动路径规划算法详解4.1、利用外置摄像头获取图像或者视频4.2、利用目标检测算法进行障碍物的识别和定位4.3、根据目标检测结果制作二维平面映射图4.4、利用GUIDE制作的自动路径规划GUI效果展示和分析5、基于SSD的自动路径规划算法效果展示与分析5.1、RRT...
2019-10-19 17:22:55 2725 1
原创 直线检测算法汇总
目录1、场景需求2、Hough_line直线检测算法2.1 Hough_line实现步骤2.2 Hough_line代码实战2.3 效果展示与分析2.4 HoughP_line代码实战2.5 效果展示与分析3、LSD直线检测算法-[项目主页](http://www.ipol.im/pub/art/2012/gjmr-lsd/)-[论文链接](http://www.ipol.im/pub/art/2...
2019-09-22 15:36:08 43518 76
原创 SPLT(Skimming-Perusal Tracking)算法详解
‘Skimming-Perusal’ Tracking: A Framework for Real-Time and Robust Long-term Tracking论文链接:论文链接论文代码:代码链接目录1、SPLT算法简介1.1 short-term tracking和long-term tracking的区别1.2 SPLT简介2、SPLT算法整体框架3、SPLT算法实现步骤4、SP...
2019-09-14 11:37:56 5704 1
转载 Spatial Transformer Networks(STN)详解
目录1、STN的作用1.1 灵感来源1.2 什么是STN?2、STN网络架构![在这里插入图片描述](https://img-blog.csdnimg.cn/20190908104416274.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L...
2019-09-08 12:17:33 11001 1
原创 垃圾分类资料汇总
目录一、前言二、垃圾分类话题简介三、当前存在的一些有用参考资源四、当前存在的垃圾分类小程序或者APP五、当前规模比较大的产品六、个人想法参考资料注意事项一、前言 自从上海实行了垃圾分类之后,垃圾分类这个话题就成为了一个热点话题,比较流行的一句话就是“你是什么垃圾?”。随着上海的实施之后,北京、深圳、广州、西安等地也纷纷出台了一些有关垃圾分类的政策,鼓励用户进行垃圾分类,市场上开始出现了各式各...
2019-09-01 17:46:40 6931 1
原创 模型转换、模型压缩、模型加速工具汇总
目录一、场景需求解读二、模型转化工具汇总1、模型转换工具的作用2、模型转换工具简介三、模型压缩和加速工具汇总1、模型压缩加速工具的作用2、模型压缩加速工具简介参考资料注意事项一、场景需求解读 在现实场景中,我们经常会遇到这样一个问题,即某篇论文的结果很棒,但是作者提供的训练模型是使用pytorch训练的,而我自己却比较擅长用tensorflow,我想要使用该模型做一些其它的项目。那么很多人就...
2019-08-18 11:20:06 16398 4
原创 Python+Opencv测量物体之间的距离
目录一、场景需求解读二、算法原理简介三、算法实现步骤四、算法代码实现五、算法效果展示与分析参考资料注意事项一、场景需求解读 在现实场景中,我们可能会遇到这个问题,即需要自动的测量图像中的不同目标之间的距离。通过这个测量,我们可以明确的知道图像中各个目标的位置以及各个目标之间的距离,便于我们做出合理的规划。本文是在该博客的基础上面进行拓展而来的。下图展示了一个样例图片,即图中最左边的是我们的参...
2019-08-11 16:05:36 26647 19
原创 Python+Opencv4点仿射变换
目录一、场景需求解读二、算法原理简介三、算法实现步骤四、算法代码实现五、算法效果展示与分析六、思维拓展参考资料注意事项一、场景需求解读 在处理现实生活中的图像处理问题时,我们经常会遇到一种情况-即我们将要处理的目标的位置是斜的,我们需要使用仿射变换进行矫正。当你做了很多现实场景中的案例之后,你就会发现这是一个非常通用的模块,因而本篇博客针对这个问题进行了详细的论述,具体的案例如下图所示,左边...
2019-08-11 13:32:43 10578 7
原创 Python+Opencv颜色和形状检测
目录一、场景需求解读二、算法原理简介三、算法实现步骤四、算法代码实现五、算法效果展示与分析参考资料注意事项一、场景需求解读 现实场景中,我们有时需要自动的检测出图片中目标的颜色和其对应的形状,然后根据这些信息快速的找到我们需要的目标,这在真实场景中具有广泛的应用。下图展示了一张实例,我们需要知道图片中目标的颜色和形状信息。二、算法原理简介 为了检测不同物体的颜色,本文的实现思路为:1...
2019-07-21 11:49:45 25173 14
原创 Python+Opencv分水岭算法
目录一、分水岭算法(Watershed)简介二、分水岭算法实现步骤三、阈值和轮廓检测硬币分割代码实现与分析四、分水岭硬币分割代码实现五、代码效果展示与分析参考资料注意事项一、分水岭算法(Watershed)简介 所有的灰度图像都可视为拓扑平面,我们将灰度值高的区域看成山峰,将灰度值低的区域看成山谷,我们向图像上所有的"山谷"中注入不同颜色的水,不断的注水,水位则会不断上升,注入的水将灌满山谷...
2019-07-20 23:25:54 8313 6
原创 Python+Opencv检测模糊图片
目录一、场景需求解读二、模糊图片检测方案简介三、模糊图片检测原理简介四、算法实现步骤五、算法代码实现六、算法效果展示与分析参考资料注意事项一、场景需求解读 现实场景中,我们经常会使用不同的设备区拍摄一些照片,常用的一些设备包括手机、相机等,但是在拍摄的过程中可能会受到一些因素的影响,最终导致拍摄出来的照片比较模糊。对于这些图片而言,我们经常利用人眼进行观察,这样比较费时费力,本文针对这个问题...
2019-07-20 18:55:14 18657 1
原创 Python+Opencv常用小工具集合
目录一、小工具1-URL转化为图片二、小工具2-鼠标响应参考资料注意事项一、小工具1-URL转化为图片1、代码实现# coding=utf-8# 导入python包import numpy as npimport urllib.request as urimport cv2# 方法1-使用OpenCV、NumPy和urllibdef url_to_image(url): # ...
2019-06-09 11:50:20 1188 1
原创 Python+Opencv实现模板匹配
目录一、模板匹配简介二、传统模板匹配算法不足之处三、多尺度模板匹配实现步骤四、多尺度模板匹配实现代码五、多尺度模板匹配效果展示和分析六、思维扩展参考资料注意事项一、模板匹配简介 所谓的模板匹配,即在给定的图片中查找和模板最相似的区域,该算法的输入包括模板和测试图片,整个任务的思路就是按照滑窗的思路不断的移动模板图片,计算其与图像中对应区域的匹配度,最终将匹配度最高的区域选择为最终的结果。下图...
2019-06-08 16:39:51 14153 15
原创 基于python的HOG+SVM目标检测算法实现
目录一、场景需求解读二、HOG算法简介三、SVM算法简介四、基于HOG的目标检测算法训练流程五、目标检测代码实现六、非极大值抑制(NMS)简介及代码实现七、NMS效果展示与分析八、思维扩展参考资料注意事项一、场景需求解读 目标检测是一个很常见的计算机视觉任务,它在现实场景中具有很多的应用。随着深度学习技术的快速发展,当前主流的目标检测算法主要分为单阶段和双阶段,代表性的算法包括SSD和Fas...
2019-06-08 14:43:57 28725 14
原创 Python+Opencv实现实时的条形码检测
目录一、场景需求简介二、算法实现步骤三、图片中条形码检测代码实现四、图片中条形码检测效果展示与分析五、视频中条形码检测代码实现六、视频中条形码检测效果展示与分析七、思维扩展参考资料注意事项一、场景需求简介 在现实场景中,我们经常会遇到条形码,它的主要作用是用来标识物体,使得每一个物体都有唯一的一个编号,这样可以极大的提高查找效率等,比较常用的应用场景是超市和图书馆等,售货员通过扫描这些条形码...
2019-06-07 21:05:15 9645 1
原创 Python计算两张图片的相似度
目录一、场景需求解读二、Mean Squared Error (MSE)简介三、The Structural Similarity Index (SSIM)简介四、算法代码实现五、效果展示与分析六、思维扩展参考资料注意事项一、场景需求解读 在现实场景中,我们经常会遇到一个问题,即如何评价不同图片的好坏,或者如何比较两张图片的相似性。它在学术研究领域中具有的广泛的研究前景,例如当你提出来一种新...
2019-06-07 16:20:27 24287 3
原创 Python+Opencv寻找图像中最亮的区域
目录一、场景需求解读二、算法原理简介三、算法代码实现四、代码运行步骤五、算法效果展示和分析六、思维扩展参考资料注意事项一、场景需求解读 在有些现实场景中,我们需要去使用算法自动的寻找到图片中的最亮的区域,这个区域是我们感兴趣的目标所在的位置,比较典型的是一个应用是视网膜图像,图像中视网膜所在的位置比较亮,而其它地方比较暗,我们更加关注视网膜所在的区域,因而需要使用算法自动的寻找到这个区域,然...
2019-06-07 10:59:19 11517 2
原创 Python实现快速的风格迁移
目录一、什么是风格迁移?二、风格迁移算法实现步骤三、风格迁徙算法代码实现四、代码运行流程五、风格迁徙算法效果展示与分析六、思维扩展参考资料注意事项一、什么是风格迁移? 所谓的迁移比较简单,即输入包含两个图片,一张source图片,一张target图片,风格迁移的目的是将source图片上面的色彩迁移到target图像中,从而形成一张新的图片,它在现实场景中具有较多的应用,比较经典的应用是手机...
2019-06-06 21:12:28 4870 1
原创 Python+Opencv实现多种形状的检测
目录一、Hough变换是什么?二、Hough变换原理简介三、Hough变换实现步骤四、Hough变换直线检测代码实现及效果展示五、Hough变换圆形检测代码实现及效果展示六、基于Hough的椭圆检测代码实现及效果展示七、轮廓检测不同形状代码实现及效果展示八、思维扩展参考资料注意事项一、Hough变换是什么? Hough变换是由 P.V.C.Hough提出的一种算法,这种算法可以快速、准确的检...
2019-06-06 18:24:45 31898 3
原创 Python实现超像素分割
目录一、什么是超像素?二、超像素具有哪些特点?三、Simple Linear Iterative Clustering (SLIC)算法实现步骤四、SLIC算法代码实现五、效果展示和分析六、基于超像素的边缘检测代码七、基于超像素的边缘检测效果展示与分析八、思维扩展参考资料注意事项一、什么是超像素? 超像素概念是2003年Xiaofeng Ren提出和发展起来的图像分割技术,它是指具有相似纹理...
2019-06-06 15:25:19 16244 10
原创 Python+Opencv根据颜色进行目标检测
目录一、什么是颜色目标检测?二、如何实现基于颜色的目标检测?三、算法代码实现四、效果展示与分析一、什么是颜色目标检测? 所谓的颜色目标检测,即根据物体的颜色来快速的进行目标定位,该算法的思路比较简单,但是却有很大的使用价值。二、如何实现基于颜色的目标检测? 整个算法的实现步骤比较简单,具体的步骤如下所示:步骤1-根据图片中的目标设定合适的lower和upper阈值;步骤2-使用c...
2019-06-04 17:05:50 7013 2
原创 Python+Opencv实现无参数、全自动的Canny算法
目录一、什么是Canny边缘检测算法?二、最优边缘准则是什么?三、Canny算法实现步骤五、无参数、自动化Canny算法代码实现六、改进算法效果展示一、什么是Canny边缘检测算法? Canny边缘检测算子是John F. Canny于 1986 年开发出来的一个多级边缘检测算法。更为重要的是 Canny 创立了边缘检测计算理论(Computational theory of edge de...
2019-05-02 16:04:33 8026 4
原创 Python+Opencv建立一个文档扫描器
一、什么是文档扫描器? 简单来讲,所谓的文档扫描器的作用是对手机拍摄的图片中的目标进行校正的过程,具体的效果如下图所示:左边表示的是原始的输入图片,右边表示校正后的结果,我们可以观察到相比于校正前的图片而言,纠正后的图片变得更加规整,更加清晰。二、实现文档扫描器的步骤为了实现这样的一个文档扫描器,我们只需要执行简单的三个操作就可以啦。1. 图像边缘检测-获取图像中的目标的边缘;2....
2019-05-02 12:07:12 2848 2
原创 Python+Opencv实现自动化阅卷
在我们的日常生活中有很多自动化阅卷的需求,比如我们的期中考试、期末考试、中考、高考、四级、六级等等。总而言之,现实场景中我们有很多的考试,但是每一次考完试后,焦虑的不仅仅是学生,还有老师!老师们需要夜以继日的去阅卷,尽快得出学生的考试成绩,这是一个费人费力但又是刚需的一个任务。庆幸的是当前这个任务基本上已经被自动化啦,本文的任务就是来理解这其中的奥秘!一、什么是自动化阅卷/网上阅卷?百度的...
2019-05-01 18:32:10 11883 1
原创 Opencv测量图片中的物体大小
一、什么是物体测量? 所谓的物体测量就是算法通过计算后自动的输出图像中各个物体的大小,具体如下图所示: 我们将该图输入到设计的算法中,算法通过计算依从从左往右输出图片中各个物体的大小并输出相应的BB,这个任务在现实场景中具有很多的应用,下面就来看看如何来实现这个功能了吧!二、如何实现物体测量?步骤1-加载待测试的图片并进行预处理操作,具体包括:图像灰度化、高斯滤波、边缘检测、膨胀和腐...
2019-05-01 12:29:47 33131 20
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人