统计语言模型

语言模型是描述自然语言的数学模型,分为文法型和统计型。统计模型如N-gram、HMM、MEM利用概率参数估计句子可能性。在处理低频词时,数据平滑技术用于避免概率为0,提升模型描述能力。
摘要由CSDN通过智能技术生成

语言模型是描述自然语言内在规律的数学模型。语言模型可分为传统的文法型语言模型和基于统计的语言模型。

文法型语言模型的文法规则来源于语言学知识,但这种语言模型不能处理大规模真实文本。

基于统计的语言模型通常是概率模型,借助统计语言模型的概率参数,可以估计出自然语言中每个句子出现的可能性,而不是简单判断该句子是否符合文法。常用的统计语言模型,有N元文法模型(N-gram)、隐马尔科夫模型(HMM)、最大熵模型(MEM)。

统计语言模型

该模型对于任何一个语句都给出出现的概率,并不要求语句在语法上是完备的。

假定词是一个句子的最小的结构单位,并假设一个语句s由词w1,w2,...,wn组成,那么p(s)可由公式1计算:

                

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值