HDU 4661 Message Passing ( 树DP + 推公式 )

参考了:

http://www.cnblogs.com/zhsl/archive/2013/08/10/3250755.html

http://blog.csdn.net/chaobaimingtian/article/details/9852761

 

题意:一个有n个节点的树,每个节点存有一份独一无二的信息,要求用最小的步数,把每个节点的信息共享给所有的节点。一个节点把自己所包含的所有信息传递给相邻的一个节点为一步。

题目不是求最小的步数,而是问最小的步数下,信息传递的方法有多少种。

 

分析:

  1. 最小步数:所有节点把信息传给同一个节点,再由这个节点传给其他节点。因此最小步数为树边数的2倍,即2*(n-1)。我们把这个节点称为信息交换的中心节点。
  2. 拓扑排序数:从根节点开始,沿着每个边依次遍历每个点的不同走法。比如对于树:n=4,边为(1,2)(1,3)(2,4),边的编号依次为1,2,3,设根为1,那么不同的遍历方案有(这里写的是边的序号):(1,3,2)(1,2,3)(2,1,3)三种。我们说以1为根的拓扑排序数为3。
  3. 假设所有节点把信息传给中心节点的拓扑排序数为X,那么再由这个节点传给其他节点的拓扑排序数也为X,总的方法数就是X2
  4. 枚举所有的中心节点Xi, 总方法数即为ans = sum( Xi2 ), 1 <= i<= N;
  5. 求每个节点的拓扑排序数:DFS一次,记录dp[u], cnt[u]。dp[u]为以u为根节点的子树的拓扑排序数,cnt[u]为以u为根节点的子树的节点的个数。假设v1,v2为u的两个子树,那么v1, v2合并后的拓扑排序数为:sum = dp[v1]*dp[v2]*C( cnt[v1]+cnt[v2], cnt[v1]);(C为组合数公式)对于u的所有儿子,可以采用两两合并的方法。
  6. 求以u为中心节点的拓扑排序数dp[u](即u为整棵树的根节点):再次DFS一遍。

设u的父亲为fa,因为DFS是先根序遍历,因此我们在求以u为中心节点的拓扑排序数dp[u]之前,已经先将以fa为中心节点的拓扑排序数dp[fa]求了出来,因此下面我们可以直接使用这个值。

我们将fa中除去子树u的所有子树合并成一个子树t,根据上面的式子:

 

 

#pragma comment(linker,"/STACK:102400000,102400000")
#include <cstdio>
#include <cstdlib>
#include <cstring>

#define LL long long int

using namespace std;

const int MAXN = 1000010;
const LL MOD = 1000000007;

struct Edge
{
    int v;
    int next;
};

int head[MAXN];
Edge D[ MAXN << 1 ];
int N, ans;
int EdgeN;
LL cnt[MAXN];
LL dp[MAXN];
LL fac[MAXN];
LL rev[MAXN];

void AddEdge( int u, int v )
{
    D[EdgeN].v = v;
    D[EdgeN].next = head[u];
    head[u] = EdgeN++;
    return;
}

//求逆元模板
void ExGcd( LL a, LL b, LL& d, LL& x, LL& y )
{
    if ( !b ) { d = a, x = 1, y = 0; }
    else
    {
        ExGcd( b, a % b, d, y, x );
        y -= x * ( a / b );
    }
    return;
}

LL GetInverse( LL num )
{
    LL d, x, y;
    ExGcd( num, MOD, d, x, y );
    return ( x % MOD + MOD ) % MOD;
}

//预处理出所有阶乘和逆元
void init()
{
    fac[0] = 1;
    for ( int i = 1; i < MAXN; ++i )
        fac[i] = ( fac[i - 1] * i ) % MOD;

    for ( int i = 1; i < MAXN; ++i )
        rev[i] = GetInverse( fac[i] );

    return;
}

//第一次DFS,求出以cur为根的子树的节点个数cnt[u]和拓扑排序数dp[cur]
void DFS1( int cur, int fa )
{
    cnt[cur] = dp[cur] = 1;
    for ( int i = head[cur]; i != -1; i = D[i].next )
    {
        if ( D[i].v == fa ) continue;
        DFS1( D[i].v, cur );
        cnt[cur] += cnt[ D[i].v ];
        dp[cur] = ( (dp[cur]*dp[ D[i].v ])%MOD * rev[cnt[D[i].v]] )%MOD;
    }
    dp[cur] = ( dp[cur] * fac[ cnt[cur]-1 ] ) % MOD;
    return;
}

//第二次DFS,求出以cur为中心的拓扑排序数dp[cur]
void DFS2( int cur, int fa )
{
    if ( cur != 1 )
    {
        dp[cur] = (( (dp[fa]*cnt[cur])%MOD )*GetInverse(N-cnt[cur]))%MOD;
        ans = (ans + dp[cur]*dp[cur]%MOD)%MOD;
    }
    for ( int i = head[cur]; i != -1; i = D[i].next )
    {
        if ( D[i].v == fa ) continue;
        DFS2( D[i].v, cur );
    }
    return;
}

int main()
{
    init();
    int T;
    scanf( "%d", &T );
    while ( T-- )
    {
        scanf( "%d", &N );
        EdgeN = 0;
        memset( head, -1, sizeof(int)*(N+4) );
        for ( int i = 1; i < N; ++i )
        {
            int u, v;
            scanf( "%d%d", &u, &v );
            AddEdge( u, v );
            AddEdge( v, u );
        }

        DFS1( 1, -1 );
        ans = dp[1] * dp[1] % MOD;
        DFS2( 1, -1 );

        printf("%I64d\n", ( ans + MOD ) % MOD );
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/GBRgbr/p/3312866.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值