深入理解工具调用:LLM的强大功能扩展

深入理解工具调用:LLM的强大功能扩展

引言

在人工智能和自然语言处理领域,工具调用(Tool Calling)或函数调用(Function Calling)是一项重要的技术,它极大地扩展了大语言模型(LLM)的能力。本文将深入探讨工具调用的概念、实现方法以及在实际应用中的优势。我们将通过具体的代码示例,展示如何利用这一功能来增强LLM的实用性和灵活性。

什么是工具调用?

工具调用允许LLM根据给定的提示生成符合用户定义schema的输出。虽然名称暗示模型在执行某些操作,但实际上模型只是生成工具的参数,而运行工具(或不运行)则取决于用户。

一个工具调用通常包括:

  1. 名称
  2. 参数字典
  3. 可选的标识符

工具调用的主要优势包括:

  • 让模型能够访问外部功能和数据
  • 产生结构化的输出
  • 增强模型的推理能力
  • 提高模型输出的可控性和可预测性

如何实现工具调用

1. 定义工具

首先,我们需要定义工具的schema。这可以通过Python函数装饰器或Pydantic模型来实现:

使用装饰器:

from langchain_core.tools import tool

@tool
def add(a: int, b: int) -> int:
    """Adds a and b."""
    return a + b

@tool
def multiply(a: int, b: int) -> int:
    """Multiplies a and b."""
    return a * b

tools = [add, multiply]

使用Pydantic:

from langchain_core.pydantic_v1 import BaseModel, Field

class Add(BaseModel):
    """Add two integers together."""
    a: int = Field(..., description="First integer")
    b: int = Field(..., description="Second in
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值