深入理解工具调用:LLM的强大功能扩展
引言
在人工智能和自然语言处理领域,工具调用(Tool Calling)或函数调用(Function Calling)是一项重要的技术,它极大地扩展了大语言模型(LLM)的能力。本文将深入探讨工具调用的概念、实现方法以及在实际应用中的优势。我们将通过具体的代码示例,展示如何利用这一功能来增强LLM的实用性和灵活性。
什么是工具调用?
工具调用允许LLM根据给定的提示生成符合用户定义schema的输出。虽然名称暗示模型在执行某些操作,但实际上模型只是生成工具的参数,而运行工具(或不运行)则取决于用户。
一个工具调用通常包括:
- 名称
- 参数字典
- 可选的标识符
工具调用的主要优势包括:
- 让模型能够访问外部功能和数据
- 产生结构化的输出
- 增强模型的推理能力
- 提高模型输出的可控性和可预测性
如何实现工具调用
1. 定义工具
首先,我们需要定义工具的schema。这可以通过Python函数装饰器或Pydantic模型来实现:
使用装饰器:
from langchain_core.tools import tool
@tool
def add(a: int, b: int) -> int:
"""Adds a and b."""
return a + b
@tool
def multiply(a: int, b: int) -> int:
"""Multiplies a and b."""
return a * b
tools = [add, multiply]
使用Pydantic:
from langchain_core.pydantic_v1 import BaseModel, Field
class Add(BaseModel):
"""Add two integers together."""
a: int = Field(..., description="First integer")
b: int = Field(..., description="Second in