LangChain-大模型算法落地
文章平均质量分 94
大模型算法落地
优惠券已抵扣
余额抵扣
还需支付
¥99.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
m0_57781768
这个作者很懒,什么都没留下…
展开
-
如何通过并行化实现高效文本总结:使用LangChain与LangGraph的高级方法
Map-Reduce是一种常用于处理大规模数据的并行计算框架,其思想来源于函数式编程。Map(映射):将大文本拆分为多个子文档,然后并行对每个子文档执行相同的处理步骤,比如生成局部总结。Reduce(归并):将Map阶段生成的多个局部总结汇总,最终得到一个全局的总结。这种方法尤其适用于文本内容较长,超过模型上下文窗口大小的情况。在这种场景下,单次模型调用无法处理全部内容,因此需要将其拆分并逐步总结。当需要处理的文本量非常庞大时,单纯依靠一次LLM调用的方式往往无法满足需求。上下文窗口的限制。原创 2024-09-08 03:06:39 · 123 阅读 · 0 评论 -
如何通过一次LLM调用进行文本总结:使用LangChain实现高效文本概括
文本总结是一种自然语言处理技术,旨在从大量文本中提取最重要的信息,并以简短、概括的形式呈现。总结可以分为两类:抽取式总结和生成式总结。抽取式总结从原文中直接选取句子或片段,而生成式总结则通过理解文本内容生成新的总结语句。大语言模型(如GPT系列)擅长生成式总结,因为它们可以通过理解上下文和捕捉关键点生成自然的总结内容。在处理大量文本数据时,人工总结既耗时又容易出错。高效处理大数据:LLM能够快速处理和理解长篇文章、报告、文档等,帮助用户在短时间内获取关键信息。准确提取关键点。原创 2024-09-08 03:03:22 · 163 阅读 · 0 评论 -
使用LangChain构建知识图谱:从文本到图数据库的完整指南
知识图谱(Knowledge Graph,简称KG)是一种用于表示实体及其之间关系的结构化数据模型。它通过节点和边的形式展示信息,其中节点代表实体,边代表实体之间的关系。知识图谱的应用范围广泛,涵盖了搜索引擎、智能问答、推荐系统等多个领域。与传统的数据库相比,知识图谱能够以更加灵活的方式展示复杂关系。在RAG(检索增强生成)系统中,知识图谱可以为生成模型提供明确的实体和关系,使得生成的内容更加准确和可信。除了基本的节点和关系提取外,LLMGraphTransformer还支持提取节点的属性信息。通过设置。原创 2024-09-08 02:43:36 · 233 阅读 · 0 评论 -
使用LangChain构建智能问答系统:如何为Graph-RAG进行最佳提示优化
通过自定义Cypher查询模板,开发者可以确保查询的格式与风格始终符合特定需求。这对于特定领域的问答系统尤其有用。通过对Graph-RAG系统进行提示优化,我们能够显著提高模型生成查询的准确性与效率。无论是通过Few-shot示例提示,还是动态选择最相关的示例,提示优化都可以帮助我们构建更加智能的问答系统。结合LangChain的强大功能与图数据库的灵活性,开发者可以轻松创建高效的智能问答解决方案。原创 2024-09-08 02:42:13 · 148 阅读 · 0 评论 -
如何使用LangChain在图数据库中添加语义层并构建智能问答系统
图数据库是一种以图形结构存储和展示数据的数据库管理系统。在图数据库中,数据被存储为“节点”(Node)和“关系”(Relationship),节点代表实体或对象,关系代表实体之间的关联。与传统的关系型数据库相比,图数据库在处理复杂的数据关系时更加高效,尤其是在需要处理大量关联数据的情况下表现尤为出色。例如,在影视行业,图数据库可以轻松地展示电影与导演、演员、类型、制片人等之间的复杂关系。当需要查询“某个演员参演了哪些电影”或“某部电影的导演是谁”时,图数据库的查询速度和效率远超传统关系型数据库。原创 2024-09-08 02:19:51 · 151 阅读 · 0 评论 -
如何利用Python与LangChain在图数据库上实现高效查询:实体映射与查询生成的策略
接下来,我们将使用LangChain生成自定义的Cypher查询。{schema}"})本文介绍了如何使用LangChain和Neo4j构建智能问答系统的详细步骤。通过将用户的自然语言输入映射到数据库中的实际实体,并使用LLM生成自定义的Cypher查询,我们可以实现高效的图数据库查询,并将结果以自然语言的形式呈现给用户。原创 2024-09-08 02:14:38 · 130 阅读 · 0 评论 -
如何利用Python和LangChain在CSV数据上实现高效的问答系统:动态查询与验证策略
在如今的数据驱动时代,能够高效地从各种数据源(包括CSV文件)中提取信息对于构建智能问答系统至关重要。大语言模型(LLM)在与SQL数据库、API和CSV文件交互时表现出色,尤其适合用于问答任务。在这篇文章中,我们将探讨如何在Python和LangChain中构建一个基于CSV数据的问答系统,并介绍一些最佳实践,确保系统的准确性和安全性。原创 2024-09-08 02:07:40 · 209 阅读 · 0 评论 -
使用Python和LangChain处理大规模数据库中的SQL问答:动态查询生成与验证的高效策略
在这篇文章中,我们详细探讨了如何使用Python和LangChain处理大规模数据库中的SQL问答系统。动态选择相关表:通过工具调用和类别选择,动态选择与用户查询相关的表。处理高基数列:使用向量检索纠正用户输入中的拼写错误,确保SQL查询能够正确匹配列值。优化查询生成与验证:通过智能提示设计和检索策略,确保系统能够高效处理大规模数据库中的复杂查询。通过这些策略,您可以构建一个更智能、更高效的SQL问答系统,适用于处理大型数据库的场景,确保生成的查询能够准确、快速地返回用户所需的信息。原创 2024-09-08 02:06:16 · 284 阅读 · 0 评论 -
使用Python和LangChain进行SQL查询验证的智能策略:构建高效、安全的SQL问答系统
在本文中,我们详细介绍了如何使用Python和LangChain进行SQL查询的生成与验证。查询验证器的使用:通过附加查询验证步骤,检查生成的SQL查询是否存在常见错误。优化提示模板:在一次模型调用中同时生成并验证SQL查询,从而提高系统的响应速度。错误处理机制:为SQL查询链添加错误处理逻辑,确保系统在查询出错时能够安全恢复。通过这些策略,您可以构建一个更安全、稳定的SQL问答系统,确保生成的查询语法正确、结果准确,并避免潜在的安全漏洞。原创 2024-09-08 02:03:41 · 161 阅读 · 0 评论 -
使用Python和LangChain提升SQL问答的提示策略:优化数据库查询的智能方法
在数据库查询与智能问答系统的设计中,生成高效的SQL查询并获取准确的答案是一个非常重要的挑战。通过适当的提示和策略,我们可以显著提升SQL查询的生成质量,使系统能够更好地理解用户的问题并执行正确的SQL操作。在这篇文章中,我们将深入探讨如何使用LangChain构建一个高效的SQL问答系统,重点介绍如何通过优化提示和示例来改进SQL查询的生成。原创 2024-09-08 02:00:14 · 263 阅读 · 0 评论 -
使用Python和LangChain应对高基数分类值的智能查询分析:构建高效过滤系统的完整指南
我们使用Pydantic定义一个简单的Search模型,它包括查询内容和作者过滤条件。# 定义搜索模型query: str。原创 2024-09-08 01:09:47 · 24 阅读 · 0 评论 -
使用Python和LangChain构建智能过滤器的完整指南:如何将查询分析转换为可执行的检索过滤器
为了能够灵活地生成查询过滤器,我们可以使用Pydantic模型来表示用户的查询需求。Pydantic模型不仅能够定义查询的格式,还能确保输入数据的有效性。在这个示例中,我们定义了一个Search模型,用于表示查询内容及其相应的过滤条件。# 定义查询过滤器的Pydantic模型query: str# 创建一个示例查询,包含查询内容和过滤条件在这个模型中,我们定义了querystart_year(起始年份)和author(作者)。原创 2024-09-08 01:06:18 · 148 阅读 · 0 评论 -
如何使用Python和LangChain处理多重检索器的查询分析:构建高效智能查询系统的完整指南
为了让系统能够根据用户的输入生成适当的查询并选择合适的检索器,我们需要定义一个查询模式。在这里,我们使用Pydantic库来定义结构化的查询输出,其中包括查询内容和对应的人物信息。# 定义查询模式,包含查询内容和人物信息"""用于检索人物信息的查询类。"""...,description="需要查询的信息",...,description="查询的相关人物信息。应为`HARRISON`或`ANKUSH`。",原创 2024-09-08 01:05:46 · 117 阅读 · 0 评论 -
使用Python和LangChain处理多重查询分析:构建高效智能检索系统的实战指南
为了让模型能够输出多个查询,我们需要定义一个包含查询列表的类。# 定义一个包含多个查询的类"""在一个包含职位记录的数据库中进行搜索的类。"""...,description="要搜索的独立查询列表",这个类Search包含一个queries字段,用于存储多个独立的查询。通过这种方式,模型能够生成多个查询,并将它们返回给我们。在这篇文章中,我们展示了如何使用Python和LangChain处理多重查询分析,构建一个高效的智能检索系统。原创 2024-09-08 00:36:07 · 98 阅读 · 0 评论 -
使用Python和LangChain通过示例优化查询分析:构建智能化查询分解系统的完整指南
为了更好地展示查询分析器的功能,我们将定义一个包含主要查询(query)和子查询(sub_queries)的模式。子查询能够帮助我们更深入地挖掘问题中的各个组成部分,提供更精准的查询结果。# 子查询的描述如果原始问题包含多个独立的子问题,或是为了回答原始问题需要回答的更一般性的问题,请列出所有相关的子问题。确保此列表全面覆盖原始问题的所有部分。即使有些子问题存在重复,也可以接受。确保子问题尽可能专注且明确。"""# 定义查询的模式"""在一个关于构建LLM应用的软件库教程视频数据库中进行搜索的类。原创 2024-09-07 22:56:01 · 165 阅读 · 0 评论 -
使用Python和LangChain优化对话消息:智能聊天模型中的消息修剪技术与最佳实践
在某些复杂的应用场景中,我们可能需要更灵活的Token计数方式。例如,某些消息内容的Token数量计算规则较为复杂。此时可以通过编写自定义的Token计数器函数来实现更精细的控制。原创 2024-09-07 22:55:18 · 107 阅读 · 0 评论 -
使用Python和LangChain创建可调用工具的智能对话机器人:全面指南
我们可以根据实际需求修改聊天提示模板。例如,您可以根据不同的应用场景(如客服机器人、金融助理等)设计不同的系统消息,让代理的回答更具专业性和针对性。原创 2024-09-07 22:45:31 · 172 阅读 · 0 评论 -
利用Python中的Langchain和OpenAI创建检索增强的智能聊天机器人:详解实现步骤与应用
通过上述步骤,我们成功地创建了一个检索增强的聊天机器人,能够根据外部文档动态回答用户问题,并处理连续的提问。Langchain库为我们提供了强大的工具链,从文档加载、文本分割到向量存储,再到最后的检索和问答,无缝衔接了整个流程。借助查询转换技术,我们还能够增强聊天机器人处理上下文的能力,使其更加智能和灵活。最后,通过流式处理,我们进一步提升了用户体验,让聊天机器人能够实时反馈。原创 2024-09-07 22:43:04 · 205 阅读 · 0 评论 -
如何为聊天机器人添加记忆功能:探索不同的实现方法及其应用
对于非常长的对话,生成对话摘要是一种有效的管理方式。我们可以通过额外的LLM调用生成对话的摘要,然后将该摘要传递给聊天模型。# 定义摘要生成函数# 生成摘要# 清除历史记录,添加摘要# 测试生成摘要并进行对话"},通过这种方式,长时间的对话可以被自动浓缩为简洁的摘要,有效避免了上下文窗口的限制。为聊天机器人添加记忆功能是提高用户体验的关键步骤。无论是简单的消息传递、自动化的消息管理,还是通过对话摘要实现的长对话管理,都能够帮助我们构建更智能、更贴近用户需求的聊天系统。原创 2024-09-07 22:36:48 · 137 阅读 · 0 评论 -
利用Prompting技术进行高效信息提取:无需工具调用的实现方法
虽然使用可以直接解析标准化的JSON输出,但在某些复杂场景下,可能需要自定义解析器。自定义解析器的基本思路是定义一个函数,解析模型返回的字符串,将其转换为我们需要的数据结构。下面展示了一个简单的自定义JSON解析器的实现。原创 2024-09-07 22:34:38 · 122 阅读 · 0 评论 -
如何处理长文本进行信息提取:基于LangChain的实战指南
为了能够从长文本中提取关键信息,我们需要定义一个结构化的数据模式。在本例中,我们将提取与汽车历史相关的关键发展事件,并为每个事件提供年份、描述和原文证据。这不仅有助于我们进行准确的信息提取,还能让我们验证提取结果的准确性。# 定义与汽车历史相关的关键发展事件的结构化数据模式"""汽车历史中的关键发展事件。"""..., description="事件发生的年份。..., description="该年份发生的事件及其描述。..., description="提取年份和描述信息的原文句子。原创 2024-09-07 22:32:22 · 153 阅读 · 0 评论 -
如何通过参考示例优化数据提取:基于LangChain的实战指南
数据提取是指从非结构化或半结构化的数据中提取关键信息并将其组织为结构化的形式。在大多数应用中,提取的数据往往会根据预定义的模式进行结构化。通过工具调用(tool-calling)功能,LLM可以被设计为根据提取到的信息调用不同的工具来处理复杂的任务。大语言模型的强大自然语言理解能力,使得它们能够执行诸如信息提取、问题回答、分类等任务,尤其适用于需要从大量文档中提取关键信息的场景。为了让模型能够从文本中提取信息,我们需要定义一个模式(schema),即我们希望从文本中提取出的具体信息结构。原创 2024-09-07 22:29:55 · 55 阅读 · 0 评论 -
如何为每个用户配置独立检索:基于LangChain的多用户RAG实现指南
在一个多用户的系统中,每个用户都拥有自己的数据或文档集,系统需要确保这些数据在检索和生成过程中严格隔离。举个例子,假设我们有两个用户:Harrison 和 Ankush,他们分别上传了各自的工作经历数据。当Harrison询问“我在哪里工作过?”时,系统应该只能检索Harrison的工作经历,而不能返回Ankush的数据。为了实现这一目标,我们需要使用支持多用户数据隔离的向量存储和检索器,并根据用户的请求动态调整检索参数。这就是我们所说的多用户检索。原创 2024-09-07 22:27:41 · 93 阅读 · 0 评论 -
如何让你的RAG应用添加引用:基于LangChain的详细指南
首先,我们定义一个输出模式,用于指定模型在生成答案时需要引用的文档ID。我们使用Pydantic来定义输出模式。# 定义引用模式"""回答用户问题,并引用使用的文档ID。"""...,description="基于提供的文档回答用户问题。...,description="回答中引用的文档ID。# 定义引用模式,包含文档ID和引用的文本片段...,description="引用的文档ID。...,description="从指定文档引用的文本片段。# 定义包含答案和引用的结构化输出。原创 2024-09-07 22:25:48 · 125 阅读 · 0 评论 -
如何在RAG应用中返回数据来源:基于Python和LangChain的详细指南
虽然方法已经很好地完成了我们的需求,但为了更深入理解LangChain的工作原理,我们也可以通过自定义的LCEL(LangChain Expression Language)实现相同的功能。在这个实现中,我们将逐步构建一个字典,将检索到的文档添加到context键中,再将问题和上下文一起传递给模型生成回答。# 格式化文档内容# 该链将接收字典并生成回答"input": lambda x: x["input"], # 用户输入的问题。原创 2024-09-07 22:24:46 · 89 阅读 · 0 评论 -
如何在RAG应用中实现流式输出:基于Python和LangChain的详细指南
流式输出(streaming output)是一种技术,它允许应用在生成内容时逐步输出结果,而不是等待生成过程结束后一次性返回所有内容。这在处理时间较长的任务时尤为有用,用户可以实时看到部分结果,从而感受到更即时的反馈。逐字输出最终回答:当LLM生成回答时,逐字或逐词地将内容返回给用户。流式输出中间步骤:例如,在RAG系统中,问题可能会在检索之前重新表述,开发者可以选择流式输出重新表述的内容,帮助优化和调试。原创 2024-09-07 17:52:38 · 154 阅读 · 0 评论 -
如何在RAG应用中实现流式输出:基于Python和LangChain的详细指南
流式输出(streaming output)是一种技术,它允许应用在生成内容时逐步输出结果,而不是等待生成过程结束后一次性返回所有内容。这在处理时间较长的任务时尤为有用,用户可以实时看到部分结果,从而感受到更即时的反馈。逐字输出最终回答:当LLM生成回答时,逐字或逐词地将内容返回给用户。流式输出中间步骤:例如,在RAG系统中,问题可能会在检索之前重新表述,开发者可以选择流式输出重新表述的内容,帮助优化和调试。原创 2024-09-07 17:45:39 · 75 阅读 · 0 评论 -
使用LangChain构建基于RAG技术的智能问答系统:深入解析与实战指南
RAG是一种通过外部数据增强LLM知识的方法。虽然LLM可以在广泛的主题上进行推理,但它们的知识通常局限于训练期间所接触到的公开数据,且无法涵盖模型训练后产生的新信息。为了构建可以处理私人数据或应对模型知识截止日期之后数据的AI应用,必须增强模型对这些新数据的认知。而这种将相关信息检索并插入模型提示的过程,便是检索增强生成(RAG)。LangChain为构建问答系统及RAG应用提供了多种组件,尤其是在处理非结构化数据时具有优势。原创 2024-09-07 17:37:56 · 159 阅读 · 0 评论 -
如何在Python中使用LangChain实现对象的保存与加载:全面解析与实战指南
dumpd:将对象转换为一个可JSON序列化的Python字典。dumps:将对象转换为JSON字符串。load:从Python字典中加载并恢复对象。loads:从JSON字符串中加载对象。这些方法的核心功能在于,它们不仅可以保存对象的状态,还能够在反序列化过程中,通过参数,恢复API密钥等敏感信息。下面我们将逐步展示如何使用这些方法。原创 2024-09-07 17:35:16 · 113 阅读 · 0 评论 -
如何在 LangChain 中创建自定义文档加载器:从基础到高级的全面指南
随着自然语言处理 (NLP) 技术的快速发展,许多基于大语言模型 (LLM) 的应用需要从各种外部数据源(如数据库、PDF 文件等)中提取数据,并将这些数据转化为模型可以使用的格式。在 LangChain 框架中,这通常通过文档加载器 (Document Loader) 来实现。文档加载器将外部数据转换为Document对象,这些对象封装了提取的文本(称为)以及与文档相关的元数据(如作者、发布日期等)。这些Document对象可以直接用于提示大语言模型生成响应,也可以将其索引到向量存储中,供日后检索使用。原创 2024-09-06 03:13:29 · 185 阅读 · 0 评论 -
如何使用 LangChain 创建自定义检索器(Retriever):从基础到高级的全面指南
在构建现代的自然语言处理(NLP)应用中,检索器(Retriever)扮演着至关重要的角色。无论是构建问答系统还是智能助手,检索器都是用于从外部数据源获取相关文档的关键组件。这些文档被格式化为提示,供语言模型(LLM)使用,从而生成相关响应。LangChain 提供了一个强大的框架,使得开发者能够快速实现自定义的检索器。通过扩展类,开发者可以定义自己的检索逻辑,实现对特定场景的优化和定制化需求。原创 2024-09-06 03:07:34 · 108 阅读 · 0 评论 -
如何使用 LangChain 创建自定义 LLM 类:全面教程与最佳实践
在构建复杂的自然语言处理(NLP)应用时,定制化的语言模型(LLM)通常能够更好地满足特定场景的需求。LangChain 提供了一个强大的抽象接口,使得开发者可以轻松封装自定义的 LLM 类,将其集成到现有的 LangChain 框架中,进一步增强模型的功能和灵活性。通过使用标准的LLM接口,开发者可以使自定义模型无缝融入现有的 LangChain 程序中,减少代码修改量。原创 2024-09-06 03:04:42 · 161 阅读 · 0 评论 -
如何使用 LangChain 创建自定义聊天模型类:从基础到高级的全面教程
在现代的自然语言处理(NLP)领域,创建定制化的聊天模型对于构建特定领域的对话系统至关重要。LangChain提供了灵活的抽象层,允许开发者在其框架内轻松创建、集成和优化自定义的聊天模型。通过包装自定义语言模型(LLM)并实现标准的接口,开发者不仅可以快速将自定义模型集成到现有的 LangChain 项目中,还可以受益于 LangChain 提供的诸多优化功能,如批处理、异步支持以及API。在这篇博文中,我们将通过详细的示例和代码讲解,逐步展示如何在LangChain。原创 2024-09-06 03:01:47 · 102 阅读 · 0 评论 -
深入解析如何在 LangChain 中调度自定义回调事件:异步与同步环境的全面实践指南
在构建复杂的 AI 应用程序时,开发者常常需要在不同任务执行的各个步骤之间调度事件,并根据这些事件做出实时响应。通过事件驱动的编程模式,我们可以跟踪任务的进展、记录日志,甚至向用户展示任务状态。在LangChain这样的框架中,回调函数(Callback)已经成为任务链管理中的关键部分。特别是,LangChain 允许开发者创建自定义回调事件,并在异步与同步环境中灵活调度这些事件。本文将详细介绍如何在LangChain中调度自定义回调事件,涵盖异步和同步两种环境。原创 2024-09-06 03:01:03 · 297 阅读 · 0 评论 -
如何在 Python 异步环境中使用 LangChain 回调函数:详解与最佳实践
回调函数是一种作为参数传递给另一个函数的函数,通常在某个事件发生时被调用。例如,在执行一个复杂的任务链时,你可能希望在任务开始、结束或中间的某些步骤发生时执行特定的操作,回调函数就是在这些时刻触发的函数。回调函数在异步环境中的应用尤为广泛,因为它们能够在不阻塞主线程的情况下捕捉事件,进行日志记录或错误处理。异步编程是一种处理并发任务的方法,它允许程序在等待某些任务(例如 I/O 操作)完成的同时继续执行其他任务。相比同步编程,异步编程通过避免阻塞线程来提高程序的执行效率。Python 通过asyncio。原创 2024-09-06 02:53:22 · 453 阅读 · 0 评论 -
深入解析如何在 LangChain 中创建自定义回调处理器:从概念到实践的全面教程
在现代的人工智能与机器学习领域,回调处理器(Callback Handlers)已经成为一个至关重要的工具,尤其是在处理复杂的任务链和实时数据流时,回调处理器可以显著增强系统的灵活性和可扩展性。LangChain作为一个优秀的语言模型任务管理框架,不仅提供了丰富的内置回调处理器,同时也允许开发者根据项目需求自定义回调处理器,以满足特定场景的需求。在这篇文章中,我们将深入探讨如何在LangChain。原创 2024-09-06 02:50:08 · 150 阅读 · 0 评论 -
深入解析如何在 LangChain 中通过构造函数传递回调函数:从基础到高级详解
回调函数(Callback)是一种在其他函数执行时被调用的函数。通常,回调函数被传递给另一个函数或对象,当特定的事件发生时(例如任务执行完成),它会自动被触发,从而执行一系列额外的操作。回调函数被广泛应用于异步编程、事件驱动系统中,例如网络请求、用户界面交互等。在 AI 应用中,回调函数通常用于监控任务状态、收集日志信息,或者在任务结束时触发下一步的操作。例如,你可能希望在每次生成语言模型输出时记录输入和输出的日志,或者在某个任务链结束时自动启动另一个任务链。原创 2024-09-06 02:47:09 · 187 阅读 · 0 评论 -
深入理解如何在 LangChain 中为 Runnable 附加回调函数:从基础到高级教程
在进入 LangChain 的具体实现之前,我们先回顾一下什么是回调函数。回调函数是一种作为参数传递给另一个函数的函数。当外部函数完成特定任务时,回调函数会被调用以执行额外的操作。在 AI 应用中,回调函数经常被用于监控任务状态、收集调试信息或执行自定义操作。举个简单的例子,假设你在处理自然语言生成任务时,想要记录每次生成的输入和输出,或者在某个任务链执行完毕后自动触发后续任务,这时回调函数就派上用场了。原创 2024-09-06 02:44:43 · 93 阅读 · 0 评论 -
如何在运行时传递回调函数:实现灵活的LangChain代理和任务控制
回调函数(Callbacks)是编程中一种常见的设计模式,指的是在特定事件或动作发生时调用的函数。通过使用回调,开发者可以在代码执行的过程中插入自定义逻辑,而不需要改变原有的代码流程。回调函数广泛应用于异步编程、事件驱动编程和任务管理中,尤其适合需要对每个步骤或状态变化进行跟踪的任务。实时监控任务状态:在任务执行过程中,记录执行步骤和关键事件。处理错误与异常:在模型推理或工具调用中遇到异常时,通过回调触发自定义的错误处理逻辑。优化性能:通过分析回调数据,识别瓶颈或不必要的开销,并加以优化。原创 2024-09-06 02:39:54 · 86 阅读 · 0 评论 -
从Legacy LangChain Agents迁移到LangGraph代理的完整指南:更灵活的智能代理集成解决方案
首先,我们需要定义一个语言模型(如OpenAI的GPT-4)以及一个简单的工具来进行演示。在这里,我们定义一个名为的工具,它接受一个整数并返回这个整数加2的结果。# 定义OpenAI的GPT-4模型# 定义一个简单的工具:magic_function@tool"""对输入应用一个魔法函数:返回输入加2"""本文详细介绍了如何将Legacy LangChain代理迁移到LangGraph代理。原创 2024-09-06 02:20:14 · 86 阅读 · 0 评论