题意:给你n*n gcd表中的所有数(以任意顺序) ,求对角线上的n个数分别是什么。gcd表定义如下,先将n个数填在对角线的上,然后将各个格子填上对应对角线上的数的gcd值,也就是V[i][j]=gcd(V[i][i],V[j][j])
题解:观察发现有很多重复的数,而且最大的那个数必然是对角线上的数。所以用map存数据,map.first 存数,map.second存次数。
一开始发现了如果最大的数N重复x*x次,那么对角线上就有x个N,于是每次输出根号次最大的数,用这个规律wa23了(233)
然后又发现了个规律,一次取一个最大值,然后将它与已经取出来的数做gcd得到x,易得x一定不在对角线上,且出现了2次,所以将它从map中erase掉(删去)。
用这个规律可以得到以下算法,
//一开始写得ifelse逻辑有点混乱。。。
ac代码:
#define _CRT_SECURE_NO_WARNINGS #include<cstdio> #include<algorithm> #include<iostream> #include<string> #include<vector> #include<string.h> #include<map> using namespace std; typedef long long ll; const int maxn = 100 + 5; map<int, int> mp, ans; int gcd(int a, int b) { return b == 0 ? a : gcd(b, a%b); } int main() { int n; cin >> n; for (int i = 1; i <= n*n; i++) { int x; scanf("%d", &x); mp[x]++; } int total = n; while (total) { int now = 0; if (mp.rbegin()->second > 0) { now = mp.rbegin()->first, cout << now << ' ', total--, mp.rbegin()->second--; for (auto j : ans) mp[gcd(now, j.first)] -= 2 * j.second; ans[mp.rbegin()->first]++; } else { mp.erase(mp.rbegin()->first); } if (mp.empty() || total == 0)break; } }