自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(635)
  • 收藏
  • 关注

原创 YoloV8改进策略:卷积篇|ACConv2d模块在YoloV8中的创新应用与显著性能提升|简单易用|即插即用

这一创新不仅增强了模型的特征提取能力,还通过引入分组卷积的策略进一步降低了运算量,从而在保证模型精度的同时,提升了运行效率。综上所述,ACConv2d模块在YoloV8中的创新应用不仅显著提升了模型的检测精度和计算效率,还增强了模型的鲁棒性,为目标检测领域的研究和应用提供了新的思路和方法。:我们直接替换YoloV8中的所有标准Conv卷积层为ACConv2d模块。:通过引入分组卷积策略,我们在提升模型精度的同时,有效降低了运算量,使得模型在保持高性能的同时,能够更快地进行推理,适应于实时检测等应用场景。

2024-08-24 10:16:31 44

原创 CAS-ViT实战:使用CAS-ViT实现图像分类任务(二)

训练部分。

2024-08-22 06:22:23 921

原创 CAS-ViT实战:使用CAS-ViT实现图像分类任务(一)

EMA是一种加权移动平均技术,其中每个新的平均值都是前一个平均值和当前值的加权和。在深度学习中,EMA被用于模型参数的更新,以减缓参数在训练过程中的快速波动,从而得到更加平滑和稳定的模型表现。

2024-08-21 22:23:17 1044

原创 YoloV9改进策略:下采样与上采样改进|下采样模块和DUpsampling上采样模块|即插即用

在深度学习与计算机视觉领域,YoloV9作为实时目标检测算法的代表,以其卓越的性能和效率赢得了广泛认可。然而,为了不断追求更高的精度与更快的推理速度,我们在YoloV9的基础上进行了创新性改进,重点引入了先进的下采样模块和DUpsampling上采样模块。这些改进不仅显著提升了YoloV9的性能,还为其在复杂场景下的应用提供了更强大的支持。下采样模块的革新该模块结合了卷积层和最大池化层来生成具有较低维度的扩展特征图,同时考虑了计算成本的优化。以下是该下采样模块的详细总结:卷积层和最大池化层:特征图拼接:卷积

2024-08-21 18:52:06 39

原创 YoloV10的改进策略:下采样改进|集成GCViT的Downsampler模块实现性能显著提升|即插即用

随着深度学习在计算机视觉领域的广泛应用,目标检测任务成为了研究热点之一。YoloV8作为实时目标检测领域的领先模型,凭借其高效性与准确性赢得了广泛的关注。然而,为了进一步提升YoloV8的性能,特别是在特征提取与下采样过程中的信息保留能力,我们引入了来自GCViT(Global Context Vision Transformers)模型中的Downsampler模块。本文将详细阐述这一改进方法,并探讨其带来的显著优势。

2024-08-21 10:34:17 289

原创 YoloV10改进策略:下采样与上采样改进|下采样模块和DUpsampling上采样模块|即插即用

在深度学习与计算机视觉领域,YoloV10作为实时目标检测算法的代表,以其卓越的性能和效率赢得了广泛认可。然而,为了不断追求更高的精度与更快的推理速度,我们在YoloV10的基础上进行了创新性改进,重点引入了先进的下采样模块和DUpsampling上采样模块。这些改进不仅显著提升了YoloV10的性能,还为其在复杂场景下的应用提供了更强大的支持。下采样模块的革新该模块结合了卷积层和最大池化层来生成具有较低维度的扩展特征图,同时考虑了计算成本的优化。以下是该下采样模块的详细总结:卷积层和最大池化层:特征图拼接

2024-08-20 22:49:18 340

原创 YoloV8的改进策略:下采样改进|集成GCViT的Downsampler模块实现性能显著提升|即插即用

随着深度学习在计算机视觉领域的广泛应用,目标检测任务成为了研究热点之一。YoloV8作为实时目标检测领域的领先模型,凭借其高效性与准确性赢得了广泛的关注。然而,为了进一步提升YoloV8的性能,特别是在特征提取与下采样过程中的信息保留能力,我们引入了来自GCViT(Global Context Vision Transformers)模型中的Downsampler模块。本文将详细阐述这一改进方法,并探讨其带来的显著优势。

2024-08-20 22:24:17 493

原创 Yolov10网络详解与实战(附数据集)

本次使用2017版本的COCO数据集作为例子,演示如何使用YoloV8训练和预测。数据集选用我以前自己标注的数据集。下载链接:类别如下: [‘c17’, ‘c5’, ‘helicopter’, ‘c130’, ‘f16’, ‘b2’,本文对yolov10的模型做了讲解,并且带大家一起实战!

2024-08-20 13:42:25 113

原创 YoloV8改进策略:下采样与上采样改进|下采样模块和DUpsampling上采样模块|即插即用

河流冰语义分割是一项关键任务,它可以为我们提供河流监测、灾害预测和交通管理所需的信息。以往的工作主要集中在提高准确性上,但对于实际应用而言,效率也同样重要。在本文中,我们提出了一种实时且准确的河流冰语义分割网络,命名为FastICENet。该网络架构主要由两个分支组成,即一个浅层高分辨率空间分支和一个深层上下文语义分支,这两个分支都是为了应对遥感图像中河流冰的尺度多样性和不规则形状而精心设计的。然后,在上下文分支中采用了基于轻量级Ghost模块的新型下采样模块和密集连接块,以降低计算成本。

2024-08-19 22:26:49 584

原创 FastICENet:一种用于航空遥感河流冰图像的实时精确语义分割模型

河流冰语义分割是一项关键任务,它可以为我们提供河流监测、灾害预测和交通管理所需的信息。以往的工作主要集中在提高准确性上,但对于实际应用而言,效率也同样重要。在本文中,我们提出了一种实时且准确的河流冰语义分割网络,命名为FastICENet。该网络架构主要由两个分支组成,即一个浅层高分辨率空间分支和一个深层上下文语义分支,这两个分支都是为了应对遥感图像中河流冰的尺度多样性和不规则形状而精心设计的。然后,在上下文分支中采用了基于轻量级Ghost模块的新型下采样模块和密集连接块,以降低计算成本。

2024-08-19 22:07:10 104

原创 YOLOv10:实时端到端目标检测

近年来,YOLO系列模型因其在计算成本与检测性能之间的有效平衡,在实时目标检测领域占据了主导地位。研究人员在YOLO的架构设计、优化目标、数据增强策略等方面进行了探索,并取得了显著进展。然而,YOLO在后处理阶段对非极大值抑制(NMS)的依赖阻碍了其端到端的部署,并对推理延迟产生了不利影响。此外,YOLO中各组件的设计缺乏全面和彻底的审查,导致明显的计算冗余,限制了模型的性能。这导致了次优的效率,并存在相当大的性能提升空间。在这项工作中,我们的目标是同时从后处理和模型架构两个方面进一步推动YOLO的性能与效

2024-08-19 07:33:13 686

原创 TCFormer:通过标记聚类Transformer实现视觉识别

Transformer在计算机视觉领域得到了广泛应用,并取得了显著成功。大多数最先进的方法将图像分割成规则网格,并用视觉标记表示每个网格区域。然而,固定的标记分布忽略了不同图像区域的语义含义,导致性能次优。为了解决这个问题,我们提出了标记聚类Transformer(TCFormer),它基于语义含义生成动态视觉标记。我们的动态标记具有两个关键特性:(1)使用相同的视觉标记表示具有相似语义含义的图像区域,即使这些区域不相邻;(2)专注于具有有价值细节的区域,并使用精细的标记来表示它们。

2024-08-18 19:24:12 220

原创 YoloV9改进策略:主干网络改进|YoloV9与InceptionNeXt主干网络的创新融合|显著提升性能,引领视觉识别新纪元|即插即用

受 Vision Transformer 长程依赖关系建模能力的启发,大核卷积最近被广泛研究和采用,以扩大感受野和提高模型性能,如采用7×7深度卷积的杰出工作connext。虽然这种深度算子只消耗少量的flop,但由于其较高的访存开销,极大地影响了模型在功能强大的计算设备上的效率。例如,ConvNeXt-T与ResNet-50具有类似的FLOPs,但在A100 gpu上进行全精度训练时,仅实现了60%的吞吐量。虽然减小ConvNeXt的核大小可以提高速度,但会导致性能的显著下降。

2024-08-18 17:24:58 484

原创 module ‘pkgutil‘ has no attribute ‘ImpImporter‘. Did you mean_ ‘zipimporter‘_

🔥🚀本专栏教你如何嗨翻Yolov8!🚀🔥💡升级大招:汲取最新论文精华,给你一整套Yolov8升级秘籍!包括但不限于:注意力加持、卷积大换血、Block革新、Backbone升级、Head重塑,还有优化器大换血!每篇都是干货,给你N种升级选择!📊订阅专享:订阅后,独家资源等你解锁!实测数据集、详细代码和PDF教程,全部为你精心准备,只为你能更深入地学习和提升!💖专栏宗旨:质量为王,力求每篇都是精品!用心打造,只为更好的你!🎉订阅福利:快来订阅吧!还有专属QQ群等你加入,答疑解惑,一起进步!

2024-08-16 20:53:56 629

原创 第二十九篇 模型初始化

调用自定义初始化函数init.trunc_normal_(m.weight, std=.02) # 假设trunc_normal_已经可用return x# 使用模型注意上面的函数只是模拟的,因为PyTorch在较新版本中(如1.7及以上)提供了。如果你的PyTorch版本支持,可以直接使用它。在函数中,我们通过在模型初始化时自动调用它。apply方法会递归地遍历模型中的所有模块,并对每个模块调用函数。需要注意的是,

2024-08-16 02:45:00 327

原创 CAS-ViT:面向高效移动应用的卷积加性自注意力视觉Transformer

作为视觉Transformer的关键组件,自注意力机制可以有效地捕获不同位置之间的关系。给定一个输入x∈RN×dx∈RN×d,如图2(a)所示,其中包含NNN个标记,每个头内部有ddd维嵌入向量。自注意力可以通过相似度函数Sim⁡QKexp⁡QK⊤dSimQKexpQK⊤d​OSoftmax⁡QK⊤dVOSoftmaxd​QK⊤​V。

2024-08-15 21:35:45 348

原创 YoloV8改进策略:Block改进|LeYOLO,一种用于目标检测的新型可扩展且高效的CNN架构|复现LeYolo,轻量级Yolo改进

倒置瓶颈(Inverted Bottleneck),最初由MobileNetV2[25, 54]提出,因其轻量级计算和简单性而成为许多最新先进模型[62, 63, 18, 65, 43, 38, 69]的精髓。在FLOP计算方面,要实现超越深度可分离卷积的效果水平是复杂的。逐点卷积解决了缺少通道间相关性的问题,这是无法回避的难题。然而,在我们的倒置瓶颈块实验中,我们观察到优化通道数可以有效地减少计算需求,特别是在大空间特征图尺寸下。实际上,如果一个块的扩展比等于一,或者通过连接效应,输入通道Cin。

2024-08-15 06:33:00 891

原创 YoloV8改进策略:Block改进|自研GroupxLSTM模块|即插即用(顶会专属)

是一种在传统长短期记忆网络(LSTM)基础上进行改进和扩展的循环神经网络(RNN)变体。LSTM作为处理序列数据(如时间序列分析、自然语言处理等)的强大工具,通过引入“门”机制(遗忘门、输入门、输出门)有效缓解了梯度消失和梯度爆炸的问题。

2024-08-13 09:21:26 784

原创 LeYOLO,一种用于目标检测的新型可扩展且高效的CNN架构

倒置瓶颈(Inverted Bottleneck),最初由MobileNetV2[25, 54]提出,因其轻量级计算和简单性而成为许多最新先进模型[62, 63, 18, 65, 43, 38, 69]的精髓。在FLOP计算方面,要实现超越深度可分离卷积的效果水平是复杂的。逐点卷积解决了缺少通道间相关性的问题,这是无法回避的难题。然而,在我们的倒置瓶颈块实验中,我们观察到优化通道数可以有效地减少计算需求,特别是在大空间特征图尺寸下。实际上,如果一个块的扩展比等于一,或者通过连接效应,输入通道Cin。

2024-08-09 06:28:19 1058

原创 Crowd-SAM:SAM作为拥挤场景中目标检测的智能标注器

问题定义。如图1所示,我们的目标是在标记数据很少的情况下,检测拥挤场景中的对象(如行人)。我们将此问题表述为一类小样本检测任务。常见的小样本流程是将数据分为基础集和新集。不同的是,我们直接使用目标类的数据进行模型训练,因为基础模型已经在大规模数据上进行了训练。特别是,我们采用分割掩码作为中间结果,这些结果可以很容易地转换为边界框。在训练和评估过程中,仅提供边界框标注。对SAM自动生成器的初步研究。提示数量会影响SAM的性能,我们针对拥挤场景分析了这一问题。

2024-08-09 06:20:18 836

原创 YoloV9改进策略:主干网络篇|YoloV9与ConvNeXtV2的完美结合,性能显著提升的创新探索

在深度学习领域,目标检测模型的性能优化一直是研究热点。近期,我们将最先进的ConvNeXtV2主干网络成功集成到YoloV9模型中,通过替换原有的主干结构为convnextv2_tiny模型,实现了显著的性能提升,这一创新实践不仅展现了ConvNeXtV2的强大潜力,也为YoloV9的性能优化开辟了新途径。ConvNeXtV2作为ConvNeXt系列的最新成员,通过引入全局响应归一化(GRN)层和全卷积掩码自编码器(FCMAE)框架,实现了对卷积神经网络(ConvNets)的全方位升级。

2024-08-09 06:15:09 1060

原创 YoloV9改进策略:Block改进|MetaNeXtBlock赋能,性能显著提升|即插即用

ConvNeXtV2Block作为ConvNeXt V2模型的核心组成部分,凭借其出色的特征提取能力和高效的学习机制,在多个视觉识别任务中均展现出了卓越的性能。在YoloV9的框架内,我们精心设计了将ConvNeXtV2Block融入RepNCSP模块的策略,通过替换原有的RepNBottleneck模块,实现了网络结构的深度优化与特征表达能力的飞跃式提升。

2024-08-08 18:38:15 579

原创 YoloV9改进策略:EMA注意力机制在YoloV9中的创新应用与显著性能提升|即插即用

在各种计算机视觉任务中,通道或空间注意力机制在产生更清晰的特征表示方面的显著有效性得到了证明。然而,通过通道降维来建模跨通道关系可能会给提取深度视觉表示带来副作用。提出了一种新的高效的多尺度注意力(EMA)模块。以保留每个通道上的信息和降低计算开销为目标,将部分通道重塑为批量维度,并将通道维度分组为多个子特征,使空间语义特征在每个特征组中均匀分布。具体来说,除了对全局信息进行编码以重新校准每个并行分支中的通道权重外,还通过跨维度交互进一步聚合两个并行分支的输出特征,以捕获像素级成对关系。

2024-08-07 12:56:39 1036

原创 YoloV9改进策略:Block改进|GroupMamba在RepNCSP模块中的革新应用|即插即用

在深度学习和计算机视觉领域,YoloV9以其卓越的性能和高效的检测能力赢得了广泛认可。为了进一步提升YoloV9的性能,我们创新性地引入了GroupMambaLayer作为其RepNCSP模块的核心改进。这一策略不仅显著增强了模型的性能,还优化了参数效率和计算资源的使用,为YoloV9的应用带来了全新的活力。GroupMambaLayer,作为参数高效且准确的组视觉状态空间模型的关键组件,其核心优势在于其独特的调制组曼巴设计。

2024-08-07 12:54:23 668

原创 YoloV9改进策略:注意力机制改进|全局与局部注意力融合(AFF)|即插即用

在YoloV9的RepNBottleneck模块中,我们巧妙地嵌入了注意力特征融合(AFF)模块。AFF模块通过多尺度通道注意力机制(MS-CAM),有效融合了全局和局部特征上下文,解决了传统特征融合方法在处理不同尺度特征时面临的语义不一致性问题。这一改进使得YoloV9在检测过程中能够更精准地捕捉目标的细节信息,同时保持对全局场景的深刻理解。

2024-08-06 18:11:06 65

原创 YoloV8改进策略:注意力机制改进|全局与局部注意力融合(AFF)|即插即用

在YoloV8的Bottleneck模块中,我们巧妙地嵌入了注意力特征融合(AFF)模块。AFF模块通过多尺度通道注意力机制(MS-CAM),有效融合了全局和局部特征上下文,解决了传统特征融合方法在处理不同尺度特征时面临的语义不一致性问题。这一改进使得YoloV8在检测过程中能够更精准地捕捉目标的细节信息,同时保持对全局场景的深刻理解。

2024-08-06 17:40:58 555

原创 YoloV9改进策略:注意力机制改进|通过iAFF模块优化RepNBottleneck结构,YoloV9性能飞跃|即插即用

传统的YoloV9通过堆叠RepNBottleneck模块来构建其深度网络结构,以捕捉图像中的多层次特征。然而,在处理多尺度特征融合时,传统的简单加法或拼接操作往往无法有效整合不一致的语义和尺度信息,从而限制了模型性能的进一步提升。为了克服这一局限,我们在RepNBottleneck模块中嵌入了iAFF模块,实现了对输入特征图的动态和自适应融合。多尺度特征融合:iAFF模块通过聚合局部和全局上下文信息,解决了不同尺度特征融合时的语义不一致性问题。

2024-08-06 06:16:50 306

原创 YoloV8改进策略:注意力机制改进|通过iAFF模块优化Bottleneck结构,YoloV8性能飞跃|即插即用

传统的YoloV8通过堆叠Bottleneck模块来构建其深度网络结构,以捕捉图像中的多层次特征。然而,在处理多尺度特征融合时,传统的简单加法或拼接操作往往无法有效整合不一致的语义和尺度信息,从而限制了模型性能的进一步提升。为了克服这一局限,我们在Bottleneck模块中嵌入了iAFF模块,实现了对输入特征图的动态和自适应融合。多尺度特征融合:iAFF模块通过聚合局部和全局上下文信息,解决了不同尺度特征融合时的语义不一致性问题。

2024-08-04 19:09:53 728

原创 YoloV9改进策略:注意力机制改进|MS_CAM模块融入Bottleneck结构,显著提升性能|即插即用

在最新的YoloV9模型改进中,我们创新性地引入了多尺度通道注意力模块(MS_CAM),并将其无缝集成到RepNBottleneck结构中。这一改进不仅保留了YoloV9原有的高效与准确性,更在多个关键指标上实现了显著提升,充分展示了MS_CAM在提升特征融合与表达能力方面的巨大潜力。改进概述:MS_CAM模块通过巧妙结合全局和局部通道注意力机制,有效解决了传统注意力方法在处理多尺度特征时面临的瓶颈问题。在YoloV9的RepNBottleneck模块中引入MS_CAM后,模型能够更精准地捕捉并融合不同尺度

2024-08-04 08:28:07 439

原创 YoloV8改进策略:Block改进|GroupMamba在C2f模块中的革新应用|即插即用

文章目录论文翻译:《GroupMamba:参数高效且准确的组视觉状态空间模型》1、引言2、相关工作3、方法3.1、预备知识3.2、总体架构3.3、调制组Mamba层3.3.1、视觉单选择扫描(VSSS)块3.3.2、分组Mamba操作符3.3.3、通道亲和力调制(CAM)3.4、蒸馏损失函数4、实验4.1、图像分类4.2、目标检测和实例分割4.3、语义分割4.4、消融研究5、结论论文翻译:《GroupMamba:参数高效且准确的组视觉状态空间模型》https://arxiv.org/html/2407.

2024-08-03 11:43:34 700

原创 GroupMamba实战:使用GroupMamba实现图像分类任务(二)

训练部分。

2024-08-03 11:27:56 1048

原创 YoloV8改进策略:注意力机制改进|MS_CAM模块融入Bottleneck结构,显著提升性能|即插即用

特征融合,即来自不同层或分支的特征的组合,是现代网络架构中无处不在的一部分。它通常通过简单的操作来实现,如求和或拼接,但这可能不是最佳选择。在这项工作中,我们提出了一种统一且通用的方案,即注意力特征融合,它适用于大多数常见场景,包括由短连接和长连接引起的特征融合以及Inception层内的特征融合。为了更好地融合不一致的语义和尺度的特征,我们提出了一个多尺度通道注意力模块,该模块解决了在融合不同尺度特征时出现的问题。

2024-08-02 21:16:41 448

原创 注意力特征融合

特征融合,即来自不同层或分支的特征的组合,是现代网络架构中无处不在的一部分。它通常通过简单的操作来实现,如求和或拼接,但这可能不是最佳选择。在这项工作中,我们提出了一种统一且通用的方案,即注意力特征融合,它适用于大多数常见场景,包括由短连接和长连接引起的特征融合以及Inception层内的特征融合。为了更好地融合不一致的语义和尺度的特征,我们提出了一个多尺度通道注意力模块,该模块解决了在融合不同尺度特征时出现的问题。

2024-08-02 06:51:03 522

原创 GroupMamba实战:使用GroupMamba实现图像分类任务(一)

EMA是一种加权移动平均技术,其中每个新的平均值都是前一个平均值和当前值的加权和。在深度学习中,EMA被用于模型参数的更新,以减缓参数在训练过程中的快速波动,从而得到更加平滑和稳定的模型表现。

2024-07-31 09:23:25 445

原创 YoloV9改进策略:上采样改进|Patch Expanding Layer 来实现特征图的上采样

在 Swin Transformer 的解码器中,使用了 Patch Expanding Layer 来实现特征图的上采样。这个层会将相邻维度的特征图重新塑造为更高分辨率的特征图,实现了2倍的上采样。同时,特征的维度也会相应地减半。这种操作可以在解码器中进行上采样操作,以恢复图像的分辨率,同时减少特征的维度。例如:输入特征(W/32×H/32×8C)上应用线性层,将特征维度增加到2×原始尺寸(W/32×H/32×16C)。然后,利用rearrange操作,将输入特征的分辨率扩展到2倍的输入分辨率,并将特征维

2024-07-31 09:05:20 289

原创 YoloV5改进策略:Block改进|视觉网络的有效调制|全网首发

在本文中,我提出了一种创新的方法,利用最新提出的EfficientMod技术来显著提升YoloV8模型的性能。EfficientMod作为一种高效的视觉网络设计策略,通过优化调制机制,结合卷积上下文建模和特征投影层,实现了特征的高效融合与表示。我成功地将EfficientMod的核心Block设计应用于YoloV5模型中,特别是替代了原有的C3模块中的Bottleneck结构,取得了显著的涨点效果。EfficientMod概述:YoloV5模型改进:链接:https://arxiv.org/pdf/240

2024-07-30 21:59:54 47

原创 YoloV8改进策略:上采样改进|Patch Expanding Layer 来实现特征图的上采样

在 Swin Transformer 的解码器中,使用了 Patch Expanding Layer 来实现特征图的上采样。这个层会将相邻维度的特征图重新塑造为更高分辨率的特征图,实现了2倍的上采样。同时,特征的维度也会相应地减半。这种操作可以在解码器中进行上采样操作,以恢复图像的分辨率,同时减少特征的维度。例如:输入特征(W/32×H/32×8C)上应用线性层,将特征维度增加到2×原始尺寸(W/32×H/32×16C)。

2024-07-30 21:54:25 630

原创 YoloV9改进策略:Block改进|视觉网络的有效调制|全网首发

在本文中,我提出了一种创新的方法,利用最新提出的EfficientMod技术来显著提升YoloV8模型的性能。EfficientMod作为一种高效的视觉网络设计策略,通过优化调制机制,结合卷积上下文建模和特征投影层,实现了特征的高效融合与表示。我成功地将EfficientMod的核心Block设计应用于YoloV9模型中,特别是替代了原有模块中的Bottleneck结构,取得了显著的涨点效果。EfficientMod概述:YoloV9模型改进:链接:https://arxiv.org/pdf/2403.1

2024-07-29 14:24:39 304

原创 YoloV8改进策略:Block改进|视觉网络的有效调制|全网首发

链接:https://arxiv.org/pdf/2403.19963在这项工作中,我们提出了高效调制(EfficientMod),这是一种用于高效视觉网络的新型设计。我们重新审视了调制机制,该机制通过卷积上下文建模和特征投影层处理输入,并通过逐元素乘法和多层感知机(MLP)块融合特征。我们证明了调制机制特别适用于高效网络,并通过提出高效调制(EfficientMod)块来进一步定制调制设计,该块被视为我们网络的基本构建块。

2024-07-27 20:49:44 159

原创 视觉网络的有效调制

链接:https://arxiv.org/pdf/2403.19963在这项工作中,我们提出了高效调制(EfficientMod),这是一种用于高效视觉网络的新型设计。我们重新审视了调制机制,该机制通过卷积上下文建模和特征投影层处理输入,并通过逐元素乘法和多层感知机(MLP)块融合特征。我们证明了调制机制特别适用于高效网络,并通过提出高效调制(EfficientMod)块来进一步定制调制设计,该块被视为我们网络的基本构建块。

2024-07-27 20:47:19 35

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除