concrete maths ch4 number theory

ch4 number theory

数论研究正数的性质

1.整除

 gcd lcm 扩展欧几里得。

整除求和\(\sum_{n|m}\)的几个公式。ch2的知识会很有用。

2.质数

Fundamental Theorem of Arithmetic:

根据唯一分解定理,每个数可以用质数的次数数组表示:
\[ (n_2,n_3,n_5...) \]
这样 gcd lcm都有了新的定义。这种形式后面也会用到

3.质数example

欧几里得数

定义

根据质数有无数个证明的证明形式得到欧几里得数(Euclid numbers)
\[ e_n = e_1e_2 ... e_{n-1} + 1\\ e_1=1 \]

性质

欧几里得数e1~e5,e6是质数,其它(<=e19)不是。

根据欧几里得算法欧几里得数互质。

递推式为:
\[ e_n=e^2_{n-1}-e_{n-1}+1 \]
公式为:\(E \approx 1.264\)是无理数。
\[ e_n=\lfloor E^{2^n}+1/2\rfloor \]
一个类似的得到质数的公式:
\[ p_n=\lfloor P^{3^n}\rfloor \]
这样的公式没有实际用途的,因为里面的常数是根据数列推算出来的。

梅森数

定义

\(2^p-1\)的数

性质

有特殊的方法进行素数测试。

\(2^pk+1\)也有一些特殊性质。

质数的密度

\(P_n \approx n \ln n\)

\(\pi(x)\approx \frac{x}{\ln x}\)

4.阶乘的近似和质因数分解

指数上的不等式放缩得到阶乘的上下界。

阶乘质因数分解公式

5.互质

\(m\perp n\),给出了一些唯一分解定理数组和向量垂直的类比,和性质。

Stern-Brocot tree

构造与定义:

\(\frac{0}{1},\frac{1}{0}\)开始相邻的两个分数分子分母分别相加,得到的数写在它们之间。

把每次迭代得到的新数写在一层中,每一层称Farey series \(F_n\)

可以得到一棵SB树。

性质:

SB树包含了所有有理数,不重不漏。

可用LR串来代表任意有理数。L代表向左儿子转移,resp.R

知LR串求有理数可以用矩阵转移。

知有理数求LR串可以用二分加转移。

6.模 :一致关系与CRT

这里我们对整个等式取模,$a\equiv b(\mod m) $ 读作a is congruent to b modulo m(同余/全等). 可以理解为\(a-b=km\)

模相同下可以下加减乘,除分类讨论:
\[ ad \equiv bd(\mod m )\leftrightarrow a\equiv b(\mod \frac{m}{gcd(d,m)}) \]
模不同可以互相推导:
\[ a \equiv b(\mod md )\rightarrow a \equiv b(\mod d ) \]

\[ a \equiv b(\mod m ),a \equiv b(\mod n )\rightarrow a \equiv b(\mod lcm(m,n) ) \]

特别地,当\(m\perp n\)时,就是CRT的形式。

7.CRT应用:独立余

同余的一个应用是 residue number system(余数系统)即把x表示为模一些两两互质的数的余数。
\[ Res(x) = (x \mod m_1, ... , x \mod m_r) \]
对余数数组的每个元素分别加减 除(需讨论) 等价于对原数的运算。用CRT得到x

讨论了\(x^2\equiv1\)的解

例题

P4139 上帝与集合的正确用法

hdu多校第六场 1006 Faraway

8.一些定理 费马小定理,威尔逊定理

证明了引理
\[ 0 \mod m, n \mod m, 2n \mod m, ..., (m- 1)n \mod m\\ consist\ of\ 0, d, 2d, ..., m- d \]
然后证明了费马小定理
\[ n^{p-1}\equiv 1(\mod p) \]
用上一节\(x^2\equiv1\)的结论证明了Wilson's theorem:
\[ (n - 1)! \equiv -1 (mod n)\leftrightarrow \ n\ is\ prime, \]

9.phi 和 mu 积性函数

\(\phi(n)\)是0~m-1中与m互质的数的数量。gcd(x,0)==x??

积性函数

根据定义,尤其再质数处的函数值决定。

\(x^2\equiv1\)的解的数量也是积性函数。

用分数的最简形式 farey series证明了
\[ \sum_{d|n}\phi(d)=n \]
证明了g(n)是积性的。
\[ g(n)=\sum_{d|n}\phi(d) \]

mu

定义

\[ \sum_{d|n}\mu(d)=[n=1] \]

性质

莫比乌斯反演

mu(d)的计算

phi前缀和

例题

本质不同的项链种类 polya??

转载于:https://www.cnblogs.com/SuuT/p/11449404.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值