HDU 4651 (生成函数)

HDU 4651 Partition

Problem :
n的整数划分方案数。(n <= 100008)
Solution :
参考资料:
五角数 欧拉函数 五边形数定理 整数划分 一份详细的题解
欧拉函数的定义如下:
\[\phi(q) =\prod\limits_{n=1}^{\infty}(1-q^n) \]
五边形定理对欧拉函数展开如下:
\[\phi(q) = \sum_{n = 0}^{n = \infty}(-1)^nq^{\frac{3n^2\pm n}{2}}\]
其中 \(\frac{3n^2\pm n}{2}\)为广义五边形数。
而欧拉函数的倒数为
\[\frac{1}{\phi(q)} = \prod\limits_{n = 1}^{\infty} \frac{1}{1-q^k} \]
\[\frac{1}{\phi(q)} = (1 + q + q ^2 + \cdots)(1 + q ^ 2 + q ^ 4 + \cdots)(1 + q ^ 3 + q ^ 6 + \cdots)'\cdots \]
\[ \frac{1}{\phi(q)}= \sum_{n =0}^{\infty}P(q) q^n\]
其中P(q)即为q的整数划分方案数,可以从展开式的意义考虑,对于第一个括号表示1取几个,第二个括号表示2取几个,以此类推。
将上下两个式子相乘即得到
\[\sum_{n =0}^{\infty}P(q) q^n * \sum_{n = 0}^{n = \infty}(-1)^nq^{\frac{3n^2\pm n}{2}} = 1 \]
\[(1 + P(1) * q + P(2) * q^2 + P(3) * q ^ 2 + \cdots)(1 - q - q ^ 2 + q ^ 5 + \cdots) = 1\]
展开可得到
\[P(n) = \sum_{i = 1} (-1)^{i -1} P(n - \frac{3*i^2 \pm i}{2}) \]
其中要保证括号内的数大于等于0.

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <string>
#include <map>

using namespace std;

const int N = 1e5 + 8;
const int mo = 1e9 + 7;

int dp[N];

int main()
{
    cin.sync_with_stdio(0);
    int n = 1e5;
    dp[0] = 1;
    for (int i = 1; i <= n; ++i)
    {
        for (int j = 1, tmp = 1; i >= (3  * j * j - j) / 2; ++j, tmp *= -1)
        {
            int x = (3 * j * j - j) / 2;
            int y = (3 * j * j + j) / 2;
            dp[i] = ((dp[i] + tmp * dp[i - x]) % mo + mo) % mo;
            if (i >= y) dp[i] = ((dp[i] + tmp * dp[i - y]) % mo + mo) % mo;
        }
    }
    int T; cin >> T;
    while (T--)
    {
        int n; cin >> n;
        cout << dp[n] << endl;
    }
}

转载于:https://www.cnblogs.com/rpSebastian/p/7275968.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值