小希的迷宫
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 79689 Accepted Submission(s): 25090
Problem Description
上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走。但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了房间A和B,那么既可以通过它从房间A走到房间B,也可以通过它从房间B走到房间A,为了提高难度,小希希望任意两个房间有且仅有一条路径可以相通(除非走了回头路)。小希现在把她的设计图给你,让你帮忙判断她的设计图是否符合她的设计思路。比如下面的例子,前两个是符合条件的,但是最后一个却有两种方法从5到达8。
Input
输入包含多组数据,每组数据是一个以0 0结尾的整数对列表,表示了一条通道连接的两个房间的编号。房间的编号至少为1,且不超过100000。每两组数据之间有一个空行。
整个文件以两个-1结尾。
Output
对于输入的每一组数据,输出仅包括一行。如果该迷宫符合小希的思路,那么输出"Yes",否则输出"No"。
Sample Input
6 8 5 3 5 2 6 4
5 6 0 0
8 1 7 3 6 2 8 9 7 5
7 4 7 8 7 6 0 0
3 8 6 8 6 4
5 3 5 6 5 2 0 0
-1 -1
Sample Output
Yes
Yes
No
题目大意:给出一个相互连通的迷宫,判断其中是否有环路(即一个房间走到另一个房间有一条以上的路),如果是则输出NO,如果不是则输出YES。
解题思路:这是一个带环的并查集,相对于普通的并查集来说判断一下是不是有环就可以了,思路是先设置一个标记数组,表示这个点是否连接过了(因为最后判断根的个数的时候要基于这个判断,如果走过才能判断它是不是根节点),设一个bool flag表示最后的状态。然后把这个图依次连接起来,如果碰到环路则直接flag=false即可。如果没有环路,则判断根节点的个数,因为这是个连通图,整个迷宫是一个整体,所以根节点如果>1 则flag=false;最后注意一下输入的格式。ps:有个坑点,输入为0 0时,应该输出YES。AC代码:
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int _max=1e5+50;
int f[_max];
bool book[_max],flag;
int getf(int x)//寻根的过程
{
if(x!=f[x])
return f[x]=getf(f[x]);
return x;
}
void merge(int x,int y)
{
int t1,t2;
t1=getf(x);
t2=getf(y);
if(t1!=t2)
f[t2]=t1;
else//判环,如果两个节点的根已经相同了,则说明在一个环内
flag=false;
}
int main()
{
int a,b;
while(cin>>a>>b)
{
if(a==-1&&b==-1)
break;
if(a==0&&b==0)
{
cout<<"Yes"<<endl;
continue;
}
flag=true;
for(int i=1;i<_max;i++)
f[i]=i;
memset(book,false,sizeof book);
merge(a,b);//第一次也要判断,因为这个点WA了一次
book[a]=book[b]=true;//标记数组随时标记
while(cin>>a>>b&&(a||b))
{
merge(a,b);
book[a]=book[b]=true;//标记已经走过了
}
int s=0;
for(int i=1;i<_max;i++)
{
if(book[i]&&f[i]==i)
s++;
if(s>1)//根节点如果大于一个flag为false
{
flag=false;
break;
}
}
if(flag)
cout<<"Yes"<<endl;
else
cout<<"No"<<endl;
}
//system("pause");
return 0;
}