[通过少样本提示优化工具调用:提升AI计算准确性]

通过少样本提示优化工具调用:提升AI计算准确性

引言

在处理复杂的工具使用场景时,AI模型可能会因为指令复杂性而出错。通过在提示中添加少样本示例,我们可以显著提高模型的准确性。本文将介绍如何使用少样本提示优化工具调用的流程,并提供完整的代码示例。

主要内容

定义工具和模型

首先,我们定义两个基本的数学工具:加法和乘法。然后将这些工具绑定到我们的聊天模型上。

from langchain_core.tools import tool

@tool
def add(a: int, b: int) -> int:
    """Adds a and b."""
    return a + b

@tool
def multiply(a: int, b: int) -> int:
    """Multiplies a and b."""
    return a * b

tools = [add, multiply]

import os
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值