引言
在技术驱动的时代,问答系统已成为信息检索和知识发现的重要工具。本文将介绍如何在图数据库上创建问答系统。这些系统能够将用户的问题转换为图数据库查询,并返回自然语言答案。
主要内容
架构概述
大多数图形链的步骤如下:
- 转换问题为图数据库查询:模型将用户输入转换为图数据库查询(如Cypher)。
- 执行图数据库查询:执行转换后的查询。
- 回答问题:模型使用查询结果生成对用户问题的回答。
设置环境
首先,我们需要安装必要的软件包并设置环境变量。本例中使用的是Neo4j图数据库。
%pip install --upgrade --quiet langchain langchain-community langchain-openai neo4j
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
接下来,定义Neo4j的凭据。
os.environ["NEO4J_URI"] = "bolt://localhost:7687"
os.environ["NEO4J_USERNAME"] = "neo4j"
os.environ["NEO4J_PASSWORD"] = "password"
以下示例将连接到Neo4j数据库,并导入有关电影及其演员的示例数据。
from langchain_community.graphs import Neo4jGraph
graph = Neo4jGraph()
# 导入电影信息
movies_query = """
LOAD CSV WITH HEADERS FROM
'https://raw.githubusercontent.com/tomasonjo/blog-datasets/main/movies/movies_small.csv'
AS row
MERGE (m:Movie {id:row.movieId})
SET m.released = date(row.released),
m.title = row.title,
m.imdbRating = toFloat(row.imdbRating)
FOREACH (director in split(row.director, '|') |
MERGE (p:Person {name:trim(director)})
MERGE (p)-[:DIRECTED]->(m))
FOREACH (actor in split(row.actors, '|') |
MERGE (p:Person {name:trim(actor)})
MERGE (p)-[:ACTED_IN]->(m))
FOREACH (genre in split(row.genres, '|') |
MERGE (g:Genre {name:trim(genre)})
MERGE (m)-[:IN_GENRE]->(g))
"""
graph.query(movies_query)
图模式
为了让语言模型生成Cypher语句,需要了解图的模式。可以通过refresh_schema
方法刷新图模式信息。
graph.refresh_schema()
print(graph.schema)
构建问答链
使用LangChain的内置链GraphCypherQAChain
:
from langchain.chains import GraphCypherQAChain
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
chain = GraphCypherQAChain.from_llm(graph=graph, llm=llm, verbose=True)
response = chain.invoke({"query": "What was the cast of the Casino?"})
print(response)
验证关系方向
由于LLM可能在生成Cypher语句时出错,使用validate_cypher
参数来验证并纠正关系方向。
chain = GraphCypherQAChain.from_llm(
graph=graph, llm=llm, verbose=True, validate_cypher=True
)
response = chain.invoke({"query": "What was the cast of the Casino?"})
print(response)
常见问题和解决方案
- 关系方向错误:使用
validate_cypher
来自动验证和修正。 - API访问不稳定:由于某些地区的网络限制,开发者可能需要考虑使用API代理服务提高访问稳定性。
总结和进一步学习资源
对于更复杂的查询生成,可以考虑以下进阶方案:
- 提示策略:高级提示工程技术。
- 映射值:将问题中的值映射到数据库的技术。
- 语义层:实现语义层的技术。
- 构建知识图谱:构建知识图谱的技术。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—