【软考 8T(n / 2)+n^2的时间复杂度如何计算?】

要计算递归式 ( T(n) = 8T(n/2) + n^2 ) 的时间复杂度,可以使用 主定理(Master Theorem)递归树法。以下是详细步骤和结论:


一、主定理分析

主定理适用于形如 ( T(n) = aT(n/b) + f(n) ) 的递推式,其中 ( a \geq 1 ), ( b > 1 )。
代入本题参数:

  • ( a = 8 ), ( b = 2 ), ( f(n) = n^2 )
  1. 计算 ( \log_b a )
    [
    \log_2 8 = 3 \quad \Rightarrow \quad n^{\log_b a} = n^3
    ]

  2. 比较 ( f(n) ) 与 ( n^{\log_b a} )
    [
    f(n) = n^2 \quad \text{和} \quad n^{\log_b a} = n^3
    ]
    由于 ( n^2 = O(n^{3 - \epsilon}) )(取 ( \epsilon = 1 )),符合主定理 第一种情况

  3. 结论
    [
    T(n) = \Theta(n^{\log_b a}) = \Theta(n^3)
    ]


二、递归树法验证

  1. 递归展开
    每层递归的总工作量为:

    • 第 ( k ) 层:( 8^k \cdot \left( \frac{n}{2^k} \right)^2 = 8^k \cdot \frac{n2}{4k} = 2^k n^2 )
  2. 总工作量求和
    递归深度为 ( \log_2 n ),总工作量为:
    [
    \sum_{k=0}^{\log_2 n - 1} 2^k n^2 = n^2 \cdot \sum_{k=0}^{\log_2 n - 1} 2^k = n^2 \cdot (2^{\log_2 n} - 1) = n^3 - n^2
    ]

  3. 叶子节点工作量
    叶子节点数为 ( 8^{\log_2 n} = n^{\log_2 8} = n^3 ),每个叶子节点的工作量为常数 ( \Theta(1) ),总工作量 ( \Theta(n^3) )。

  4. 合并结果
    总时间复杂度为:
    [
    T(n) = \Theta(n^3) + \Theta(n^3) = \Theta(n^3)
    ]


三、递推式展开验证

展开递推式至第 ( k ) 层:
[
T(n) = 8^k T\left( \frac{n}{2^k} \right) + n^2 \sum_{i=0}^{k-1} 2^i
]
当 ( \frac{n}{2^k} = 1 )(即 ( k = \log_2 n ))时:
[
T(n) = 8^{\log_2 n} T(1) + n^2 (2^{\log_2 n} - 1) = \Theta(n^3) + \Theta(n^3) = \Theta(n^3)
]


四、结论

通过主定理、递归树法和递推展开法,一致得出:
[
T(n) = 8T(n/2) + n^2 \quad \text{的时间复杂度为} \quad \boxed{\Theta(n^3)}
]
这表明算法的执行时间随输入规模 ( n ) 以三次方的速度增长。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

flos chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值