After__today的ML学习笔记
文章平均质量分 64
跟着coursera上Andrew Ng的Machine Learning公开课学习机器学习的笔记,以及用python实现部分算法的代码
流萤__
今天以后,人生无数可能
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Machine Learning笔记(一)
对,就是吴恩达老师的machine learning的公开课,在我大b站有中文简体字幕版而且不会像在coursera上那么卡。课程链接:https://www.bilibili.com/video/av9912938/区分监督学习和无监督学习:一、监督学习:教计算机如何去完成任务(告诉计算机这个该怎么做,那个该怎么做的基础上让计算机学会这些操作,或者说给计算机具有特征的数据让它学习,然...原创 2018-07-28 16:25:20 · 880 阅读 · 0 评论 -
Machine Learning笔记(二)
线性回归以及使用梯度下降算法最小化代价函数监督学习:训练集——>学习算法——>得到一个函数h。自变量x——>函数h——>输出因变量y的值,h是x到y的函数映射分类问题是预测离散的输出值,0/1离散输出问题而回归一词指的是我们根据之前的数据预测出一个准确的输出值,线性回归中我们要解决的是一个最小化问题,我们要做的事是尽量减少假设的输出值与真实值之间差的平方(h...原创 2018-07-29 13:05:45 · 611 阅读 · 2 评论 -
Machine Learning笔记(三)
达成成就:在b站听Andrew Ng讲线代(手动狗头)简单复习了矩阵的相关知识(线代学的还行表示无鸭梨)讲的比较简单明了,而且在各种语言里也有公式之类的在不同场合或者语言下使用1索引还是0索引矩阵加法只有维度相同的矩阵才能相加矩阵乘向量A*b,A的列数必须与b的行数相等,乘完得到的新矩阵的行数是A的行数,列数是b的列数矩阵与向量的乘法具有可逆性,矩阵与矩阵的乘法不具有可逆性...原创 2018-07-30 09:23:08 · 288 阅读 · 0 评论 -
Machine Learning笔记(四)
感觉回到了统计学多元回归的课堂,融入了使用线代中的矩阵运算在多元情况下梯度下降算法(右边):下标 j 表示第 j 个参数,上标 (i) 表示第 j 个参数的第 i 条数据,本质上和上一节讲的一元下的梯度下降算法(左边)是一回事优化梯度下降算法的效率一、特征缩放还是房价的例子:当有房屋面积和卧室数量两个参数时,x1的范围很大而x2的范围很小,反映到代价函数上导致很狭长的椭圆形状...原创 2018-08-01 14:22:17 · 551 阅读 · 0 评论 -
Machine Learning笔记(五)
多项式回归概念:与选择特征的想法密切相关的一个概念被称为多项式回归。在课程中还是用的房价预测的例子,假设函数中本来有两个特征:x1:房屋的宽度,x2:房屋的深度(即长宽),这时候创造一个新的特征房屋面积x:宽度与深度的乘积,然后对这个新的特征x选择合适的模型拟合。二次模型size很大时price将会下降不太符合现实,选用三次模型,这里要注意的是这样做的话,特征的归一化就很重要,使它们的...原创 2018-08-02 11:01:30 · 443 阅读 · 0 评论 -
Machine Learning笔记(六)
讲了octave的一些基本语法=。=python科学运算的基本工具库numpymatplotlibpandas向量化代码,这个技巧很不错将看成一个向量整体,转置之后与相乘就是矩阵的乘法...原创 2018-08-03 15:03:42 · 303 阅读 · 0 评论 -
Machine Learning笔记——回归模型(一)
目录一、了解数据二、探索性数据分析,了解变量分布与变量之间的关系三、采用梯度下降法来求解回归系数四、传入实际数据查看预测结果使用梯度下降法实现简单的线性回归一、了解数据数据集:波士顿房价数据预测变量与目标变量含义:CRIM:每个城镇人均犯罪率ZN:超过25000平方尺用地划为居住用地的百分比INDUS:非零售商用地百分比CHAS:是否被河道包围...原创 2018-08-05 15:27:39 · 2616 阅读 · 0 评论 -
Machine Learning笔记——回归模型(三)
Polynomial regression多项式回归这里我们沿用上一节的房价数据,对LSTAT(底层人口比例)和MEDV(房价)做回归分析(原因见Axes网格图),同时将多项式回归结果与简单线性回归效果作比较。其中关于多项式回归在https://blog.csdn.net/After__today/article/details/81352891中有介绍。import osimport...原创 2018-08-12 10:20:57 · 499 阅读 · 0 评论 -
Machine Learning笔记——回归模型(二)
利用scikit-learn做线性回归沿用上次房价数据中的RM(房间数)和MEDV(房价),使用scikit-learn库中的LinearRegression()来做线性回归。import osimport pandas as pdimport matplotlib.pyplot as pltimport numpy as npfrom sklearn.linear_model ...原创 2018-08-11 20:09:08 · 679 阅读 · 0 评论 -
Machine Learning笔记(七)
分类问题首先了解二分类问题:例如垃圾邮件分类,肿瘤良性恶性问题等等,即下面我们了解一种新的算法:Logistic Regression(逻辑回归算法,首先它既不是逻辑也不是回归),逻辑回归算法的输出值在0到1之间。逻辑回归算法假设函数设置为一个S型函数(也可以叫逻辑函数),其输出值在(0,1)。假设函数的输出值可以理解为对新输入样本x的y=1或者y=0的概率的估计值,也就是在给定x...原创 2018-08-16 15:11:09 · 385 阅读 · 0 评论 -
Machine Learning笔记(八)
过拟合问题及解决方法从线性回归中房价的例子可以很容易理解欠拟合和过拟合的问题过度拟合的问题将会在变量较多的时候发生,这种时候训练的方程总能很好的拟合训练数据,所以代价函数很可能非常接近于0,但是这样的曲线它千方百计的拟合于训练数据,把一些样本自带的属性认作是整个系统所具有的属性,这将导致它无法泛化到新的数据样本中,以至于无法做出正确的预测。(泛化指的是一个假设模型能够应用到新样本的能力...原创 2018-08-18 11:27:06 · 429 阅读 · 0 评论