BZOJ4130:[PA2011]Kangaroos

本文探讨了如何使用K-D树解决区间查询问题,通过将询问区间视为点,将序列区间构建为K-D树,实现了高效判断区间是否相交的功能。文章详细介绍了判断区间相交的条件,并展示了如何通过正交包围盒范围查询来实现这一目标。
摘要由CSDN通过智能技术生成

浅谈\(K-D\ Tree\)https://www.cnblogs.com/AKMer/p/10387266.html

题目传送门:https://lydsy.com/JudgeOnline/problem.php?id=4130

这题跟\(BZOJ4358:permu\)一样。

不过我们需要把区间包含某个点改成判断区间是否有交点。

假设我们有俩区间\([l,r]\)\([L,R]\)

假设俩不相交则满足:\(r<L||l>R\)

假设有交:\(l<=R\)\(L<=r\)

我们把询问区间当做点,把序列区间一个一个往\(K-D\)树里面搞。

那么就可以看做是把正交包围盒\([1,R][L,inf]\)。所以判断相交或者不相交就直接变成正交包围盒范围查询了。

判断不交的时候用大区间\([mn[0],mx[1]]\),判断相交的时候用小区间\([mx[0],mn[1]]\)。由于卡常需求比较高,我就把\(struct\)改成\(namespace\)了。

时间复杂度:\(O(n\sqrt{n})\)

空间复杂度:\(O(n)\)

代码如下:

#include <cstdio>
#include <algorithm>
using namespace std;

const int maxn=5e4+5,maxm=2e5+5,inf=2e9;

int ans[maxm];
int n,m,pps,X1,X2,Y1,Y2,L,R;

int read() {
    int x=0,f=1;char ch=getchar();
    for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
    for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
    return x*f;
}

struct Kangaroos {int l,r;}a[maxn];

namespace T {
    int root;
    bool bo[maxm];
    int cnt[maxm],hismx[maxm];
    int add[maxm],cov[maxm],hiscov[maxm];

    struct point {
        int id,ls,rs;
        int c[2],mn[2],mx[2];

        bool operator<(const point &a)const {
            return c[pps]<a.c[pps];
        }
    }p[maxm];

    int build(int l,int r,int d) {
        int mid=(l+r)>>1,u=mid;pps=d;
        nth_element(p+l,p+mid,p+r+1);
        if(l<mid)p[u].ls=build(l,mid-1,d^1);
        if(r>mid)p[u].rs=build(mid+1,r,d^1);
        int ls=p[u].ls,rs=p[u].rs;
        for(int i=0;i<2;i++) {
            int mn=min(p[ls].mn[i],p[rs].mn[i]);
            p[u].mn[i]=min(p[u].c[i],mn);
            int mx=max(p[ls].mx[i],p[rs].mx[i]);
            p[u].mx[i]=max(p[u].c[i],mx);
        }
        return u;
    }

    void prepare() {
        p[0].mn[0]=p[0].mn[1]=inf;
        p[0].mx[0]=p[0].mx[1]=-inf;
        for(int i=1;i<=m;i++)
            p[i].c[0]=read(),p[i].c[1]=read(),p[i].id=i;
        root=build(1,m,0);
    }

    void cov_tag(int u) {
        if(!bo[u])bo[u]=1,hiscov[u]=0;
        cnt[u]=cov[u]=0;
    }

    void add_tag(int u,int v) {
        if(!bo[u])add[u]+=v;
        else cov[u]+=v,hiscov[u]=max(hiscov[u],cov[u]);
        cnt[u]+=v,hismx[u]=max(hismx[u],cnt[u]);
    }

    void solve(int u,int v,int hisv) {
        bo[u]=1,hiscov[u]=max(hiscov[u],hisv);
        cnt[u]=cov[u]=v;
        hismx[u]=max(hismx[u],hiscov[u]);
    }

    void push_down(int u) {
        if(add[u]) {
            if(p[u].ls)add_tag(p[u].ls,add[u]);
            if(p[u].rs)add_tag(p[u].rs,add[u]);
            add[u]=0;
        }
        if(bo[u]) {
            if(p[u].ls)solve(p[u].ls,cov[u],hiscov[u]);
            if(p[u].rs)solve(p[u].rs,cov[u],hiscov[u]);
            bo[u]=0;
        }
    }

    void change(int u) {
        if(R<p[u].mn[0]||L>p[u].mx[1]) {cov_tag(u);return;}
        if(L<=p[u].mn[1]&&p[u].mx[0]<=R) {add_tag(u,1);return;}
        push_down(u);
        if(p[u].c[1]<L||p[u].c[0]>R)cnt[u]=0;
        else cnt[u]++,hismx[u]=max(hismx[u],cnt[u]);
        if(p[u].ls)change(p[u].ls);
        if(p[u].rs)change(p[u].rs);
    }

    void make_ans(int u) {
        ans[p[u].id]=hismx[u];
        push_down(u);
        if(p[u].ls)make_ans(p[u].ls);
        if(p[u].rs)make_ans(p[u].rs);
    }
}

int main() {
    n=read(),m=read();
    for(int i=1;i<=n;i++)
        a[i].l=read(),a[i].r=read();
    T::prepare();
    for(int i=1;i<=n;i++) {
        L=a[i].l,R=a[i].r;
        T::change(T::root);
    }
    T::make_ans(T::root);
    for(int i=1;i<=m;i++)
        printf("%d\n",ans[i]);
    return 0;
}

转载于:https://www.cnblogs.com/AKMer/p/10404964.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值