题目传送门:https://arc070.contest.atcoder.jp/tasks/arc070_d
题目翻译
有\(n\)个人,其中有\(a\)个人是诚实的,另外\(b\)个是不诚实的。你可以向交互库提问:如果问\(x\)号\(y\)号是否诚实\(x\)将怎么回答?如果\(x\)是诚实的,那么\(x\)的回答就是正确的,否则有\(50\)%的几率是他瞎扯淡来唬你的。你的提问次数不能超过\(2n\)次,请确定哪些人是诚实的,哪些不是。如果为无法确定,那么输出Impossible。\(a,b\leqslant 2000\)
题解
如果\(a\leqslant b\)那么就确认不了,我只需要从\(b\)个骗子里叫\(a\)个说真话你就\(GG\)了。
当\(a>b\)我们就可以确认,只需要找出一个诚实的人,然后问他这\(n\)个人分别是不是诚实的就行了。假设存在一条链\(x_1->x_2->x_3->...->x_k\),表示\(x_{i-1}\)说\(x_i\)是诚实的。这\(k\)个人里面只要任意一个人是诚实的,那么\(x_k\)就必然是诚实的。所以我们可以维护一个栈,如果栈顶说当前枚举的人不是真的,那么两个人里面必然有一个假的,那我两个都不要。因为\(b>a\)所以最后栈里必然会留下一些人并且这些人中肯定有诚实的人,栈顶必然是诚实的,我们再问栈顶的人\(n\)个问题就解决了。
时间复杂度:\(O(n)\)
空间复杂度:\(O(n)\)
代码如下:
#include <cstdio>
using namespace std;
const int maxn=4005;
int n,a,b,top;
int sta[maxn];
bool ans[maxn];
int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
}
int main() {
a=read(),b=read(),n=a+b;
if(a<=b) {puts("Impossible");return 0;}
for(int i=1;i<=n;i++)
if(!top)sta[++top]=i;
else {
printf("? %d %d\n",sta[top]-1,i-1);
fflush(stdout);char s[3];
scanf("%s",s+1);
if(s[1]=='N')top--;
else sta[++top]=i;
}
int honest=sta[top];
for(int i=1;i<=n;i++) {
printf("? %d %d\n",honest-1,i-1);
fflush(stdout);char s[3];
scanf("%s",s+1);
ans[i]=(s[1]=='Y');
}printf("! ");
for(int i=1;i<=n;i++)
printf("%d",ans[i]);
return 0;
}