4.3.2 Measuring Credit Risk

2. Measuring Credit Risk

2.1 Default Probability

Issuer default rate is the number of bonds that have defaulted in a given year divided by the number of issues outstanding.

Dollar default rate is the total par value of bonds that have defaulted in a given year divided by the total par value of all bonds outstanding.

请添加图片描述
Cumulative default probability: an issuer with a certain rating will default within one year, within two years, within three years and so on.
Cumulative survival rate = 1 − cumulative PD \text{Cumulative survival rate} = 1-\text{cumulative PD} Cumulative survival rate=1cumulative PD

Unconditional default probability: the probability of a bond defaulting between time t 1 t_1 t1 and t 2 t_2 t2
P D K Uncond = P D t + k cumulated − P D t cumulated PD_K^{\text{Uncond}}=PD_{t+k}^{\text{cumulated}}-PD_t^{\text{cumulated}} PDKUncond=PDt+kcumulatedPDtcumulated

Conditional default probability: if the firm survives to the end of year n n n, what is the probability that it will default during year n + 1 n+1 n+1
P D t : k Cond = ( D e f t + k − D e f t ) Cumulative survival t PD^{\text{Cond}}_{t:k}=\frac{(Def_{t+k}-Def_t)}{\text{Cumulative survival}_t} PDt:kCond=Cumulative survivalt(Deft+kDeft)

What is the cumulative survival rate within four years for a B-rates Bond?

For the same rate, what is the unconditional PD that the bond will default during the fifth year? And the conditional PD during the fifth year assume no earlier default?
请添加图片描述

Cumulative survival rate: 100 % − 15.87 % = 84.13 % 100\%-15.87\%=84.13\% 100%15.87%=84.13%

Unconditional PD: 18.32 % − 15.87 % = 2.45 % 18.32\%-15.87\%=2.45\% 18.32%15.87%=2.45%

Conditional PD: 2.45 % / 84.13 % = 2.91 % 2.45\%/84.13\%=2.91\% 2.45%/84.13%=2.91%

2.2 Estimate PD

2.2.1 Estimate PD - Default Intensity Model

Poisson Distribution is used to model number of default events over time
f ( x ) = P ( X = x ) = ( λ t ) x e − λ t x ! f(x)=P(X=x)=\frac{(\lambda t)^x e^{-\lambda t}}{x!} f(x)=P(X=x)=x!(λt)xeλt

No default within T T T years
P ( X = 0 ) = ( λ t ) 0 e − λ t 0 ! = e − λ t P(X=0)=\frac{(\lambda t)^0 e^{-\lambda t}}{0!}=e^{-\lambda t} P(X=0)=0!(λt)0eλt=eλt

λ \lambda λ is hazard rate, which is the rate at which default are happening. We can use it to calculate unconditional default probabilities.

Cumulative survival rate = e − λ t ;    Cumulative PD = 1 − e − λ t \text{Cumulative survival rate}=e^{-\lambda t};\;\text{Cumulative PD}=1-e^{-\lambda t} Cumulative survival rate=eλt;Cumulative PD=1eλt

P D K Uncond = P D t + k cumulated − P D t cumulated = e − λ t − e − λ ( t + k ) PD_K^{\text{Uncond}}=PD_{t+k}^{\text{cumulated}}-PD_t^{\text{cumulated}}=e^{-\lambda t}-e^{-\lambda (t+k)} PDKUncond=PDt+kcumulatedPDtcumulated=eλteλ(t+k)

Suppose that the hazard rate is constant at 1 % 1\% 1% per year. Please calculate the probability of a default by the end of the third year and unconditional probability of a default occurring during the fourth year.

Cumulative PD = 1 − e − λ t = 1 − e − 1 % × 3 = 2.9554 % \text{Cumulative PD}=1-e^{-\lambda t}=1-e^{-1\%\times3}=2.9554\% Cumulative PD=1eλt=1e1%×3=2.9554%

Unconditional PD = ( 1 − e − λ ( t + k ) ) − ( 1 − e − λ t ) = ( 1 − e − 1 % × 4 ) − ( 1 − e − 1 % × 3 ) = 0.9656 % \text{Unconditional PD}=(1-e^{-\lambda (t+k)})-(1-e^{-\lambda t})=(1-e^{-1\%\times4})-(1-e^{-1\%\times3})=0.9656\% Unconditional PD=(1eλ(t+k))(1eλt)=(1e1%×4)(1e1%×3)=0.9656%

2.2.2 Estimate PD - KMV Model(Merton Model)

We can take credit risk as an option. Consider a firm with total value V V V that has one bond due in one year with face value D = 100 D=100 D=100.

One year laterTotal value of firm
(V)
Face value of bond
(D)
Equity
Scenario 1 500 > D 500>D 500>D 100 100 100 400 400 400
Scenario 2 300 > D 300>D 300>D 100 100 100 200 200 200
Scenario 3 100 = D 100=D 100=D 100 100 100 0 0 0
Scenario 4 70 < D 70<D 70<D 70 70 70 0 0 0

Equity is a call option on the assets of the firm with a strike price equal to the face value of the debt.

Model includes factors

  • The amount of debt in the firm’s capital structure
  • The market value of the firm’s equity
  • The volatility of the firm’s equity

c t = S t N ( d 1 ) − X e − r t N ( d 2 ) c_t=S_tN(d_1)-Xe^{-rt}N(d_2) ct=StN(d1)XertN(d2)

S t = V t N ( d 1 ) − D e − r t N ( d 2 ) S_t=V_tN(d_1)-De^{-rt}N(d_2) St=VtN(d1)DertN(d2)

P D = 1 − N ( d 2 ) PD =1-N(d_2) PD=1N(d2)

2.3 Exposure

Exposure is the amount at risk during the life of the financial instrument.

Exposure at default(EAD) is the amount of money lender can lose in the event of a borrower’s default.

2.4 Loss Given Default

Loss given default(LGD) is the amount of creditor loss in the event of a default.

The recovery rate(RR) for a bond defined as the value of the bond shortly after default and it is expressed as a percentage of its face value.

The loss given default provides the same information of loss give default, and it it the percentage recovery rate subtracted from 100 % 100\% 100%.

L G D = 1 − R R LGD = 1-RR LGD=1RR

R R = Recovery    amount Exposure = 1 − L G D Exposure RR=\frac{\text{Recovery\;amount}}{\text{Exposure}}=1-\frac{LGD}{\text{Exposure}} RR=ExposureRecoveryamount=1ExposureLGD

Recovery rates are negatively correlated with default rates.

  • Recessionary period: default rates on bonds are high and recovery rates are low.
  • Economy is doing well: default rates on bonds are low and recovery rates are high.

2.5 Expected Loss vs. Unexpected Loss

Expected loss(EL) is the amount a bank can expect to lose over a given period of time as a result of credit events.

A bank can manage expected loss by setting lending rates.

E L = E A D × P D × L G D EL=EAD\times PD\times LGD EL=EAD×PD×LGD

Expected Loss ( % ) = P D × L G D \text{Expected Loss}(\%)=PD\times LGD Expected Loss(%)=PD×LGD

Expected default rate = 1.5%Expected loss(%)=0.9%
Recovery rate = 40%
Margin to cover its expenses1.6%
Average funding cost1%
Interest rate it charges on its loans0.9% + 1.6% + 1% = 3.5%

Unexpected loss is the amount a bank cannot anticipates as a result of credit events.

The unexpected loss is high percentile of the loss distribution minus the expected loss.

The bank’s capital is a cushion that covers the unexpected loss.

2.6 Credit Loss Distribution

请添加图片描述
E A D i EAD_i EADi: The amount borrowed in the i t h i_{th} ith loan (assumed constant throughout the year).
P D i PD_i PDi: The probability of default for the i t h i_{th} ith loan.
L G D i LGD_i LGDi: The loss rate in the event of default by the i t h i_{th} ith loan (assumed known with certainty)
ρ i , j \rho_{i,j} ρi,j: The correlation between losses on the i t h i_{th} ith and j t h j_{th} jth loan.
σ i \sigma_i σi: The standard deviation of loss from the i t h i_{th} ith loan.
σ p \sigma_p σp: The standard deviation of loss from the portfolio.

For an individual loan:
The mean loss (expected loss) is
E L = P D i × E A D i × L G D i EL = PD_i\times EAD_i \times LGD_i EL=PDi×EADi×LGDi

The standard deviation of the credit loss is
σ i 2 = E ( loss 2 ) − [ E ( loss ) ] 2 = ( P D i − P D i 2 ) ( L G D i × E A D i ) 2 \sigma_i^2=E(\text{loss}^2)-[E(\text{loss})]^2=(PD_i-PD^2_i)(LGD_i\times EAD_i)^2 σi2=E(loss2)[E(loss)]2=(PDiPDi2)(LGDi×EADi)2

→ σ i = P D i − P D i 2 ( L G D i × E A D i ) \to \sigma_i=\sqrt{PD_i-PD^2_i}(LGD_i\times EAD_i) σi=PDiPDi2 (LGDi×EADi)

For a loan portfolio:
The mean loss(expected loss) is

E L p = ∑ i = 1 n E L i = ∑ i = 1 n P D i × E A D i × L G D i EL_p=\sum^n_{i=1}EL_i=\sum^n_{i=1} PD_i\times EAD_i \times LGD_i ELp=i=1nELi=i=1nPDi×EADi×LGDi

The variance of the credit loss is

σ p 2 = ∑ i ∑ j ρ i , j σ i σ j \sigma^2_p=\sum_i\sum_j\rho_{i,j} \sigma_i \sigma_j σp2=ijρi,jσiσj

We assume all P D PD PD, E A D EAD EAD, L G D LGD LGD and ρ \rho ρ are the same and constant for all loans:

σ n 2 = n σ i 2 + n ( n − 1 ) ρ σ i 2 \sigma^2_n=n\sigma^2_i+n(n-1)\rho\sigma^2_i σn2=nσi2+n(n1)ρσi2

Suppose a bank has a portfolio with 100 , 000 100,000 100,000 loans, and each loan is USD 1 1 1 million and has a 1 % 1\% 1% probability of default in a year. The recovery rate is 40 % 40\% 40% and correlation between loans is 0.1 0.1 0.1. What is the standard deviate of individual loan credit loss, and the mean and standard deviate of portfolio credit loss?

Standard deviate of individual loan credit loss:
σ i = 1 % × 99 % ( 1 × 60 % ) = 0.0597    million \sigma_i=\sqrt{1\% \times 99\%}(1\times 60\%)=0.0597\;\text{million} σi=1%×99% (1×60%)=0.0597million

Mean of portfolio credit loss:
E L = 100 , 000 × 1 × 1 % × 60 % = 60    million EL=100,000\times1\times 1\%\times 60\%=60\;\text{million} EL=100,000×1×1%×60%=60million

Standard deviate of portfolio credit loss:
σ p 2 = 100 , 00 × 0.059 7 2 + 100 , 000 × 99 , 999 × 0.1 × 0.059 7 2 = 3 , 564 , 41 → σ p = 1.888    million \sigma_p^2=100,00\times0.0597^2+100,000\times99,999\times 0.1\times 0.0597^2=3,564,41\to \sigma_p= 1.888\;\text{million} σp2=100,00×0.05972+100,000×99,999×0.1×0.05972=3,564,41σp=1.888million

3. Capital for Bank’s Credit Risk

3.1 Economic Capital v.s. Regulatory Capital

Regulatory capital is the capital bank regulators (also known as bank supervisors) require a bank to keep.

  • Separate capital calculations are added to give the total capital requirements.
  • Internal ratings-based (IRB, Basel II) - Vasicek Model
  • The Basel Committee sets one year X = 99.9 % X = 99.9\% X=99.9% for regulatory capital in the internal ratings-based approach. It occur only once every thousand years.

Economic capital is a bank’s own estimate of the capital it requires.

  • Correlations between the risks are often considered.
  • CreditMetrics model.
  • When banks determine economic capital, they tend to be even more conservative.
  • An AA-rated corporation with P D = 0.02 % PD=0.02\% PD=0.02% → setting X as high as 99.98 % 99.98\% 99.98%
    请添加图片描述

Consider a bank rated as AA. One of its key objectives will almost certainly be to maintain its AA credit rating. If an AA-rated corporation has a default probability of about 0.02 % 0.02\% 0.02% in one year. The 99.9 99.9 99.9 percentile of the default rate distribution is therefore around 14.89 % 14.89\% 14.89%. The 99.98 99.98 99.98 percentile of the distribution is around 22.31 % 22.31\% 22.31%. The expected default rate for all rated companies is 1.305 % 1.305\% 1.305%. The recovery rate is 25 % 25\% 25%. Please calculate the regulatory capital and economic capital.

E L = ( 1 − 25 % ) × 1.305 % = 0.98 % EL=(1-25\%)\times1.305\%=0.98\% EL=(125%)×1.305%=0.98%

Regulatory capital = 0.75 × 14.89 % − 0.98 % = 10.19 % \text{Regulatory capital}=0.75\times14.89\%-0.98\%=10.19\% Regulatory capital=0.75×14.89%0.98%=10.19%

Economic capital = 0.75 × 22.31 % − 0.98 % = 15.75 % \text{Economic capital}=0.75\times22.31\%-0.98\%=15.75\% Economic capital=0.75×22.31%0.98%=15.75%

3.2 Regulatory Capital — Vasicek Model

Vasicek model is used by regulators to determine capital for loan portfolios. It uses the Gaussian copula model to define the correlation between defaults.

The Basel Committee sets X = 99.9 % X = 99.9\% X=99.9% for regulatory capital in the internal ratings-based approach.
( W C D R − P D ) × E A D × L G D (WCDR - PD) \times EAD\times LGD (WCDRPD)×EAD×LGD
WCDR (worst case default rate)
请添加图片描述
Gaussian copula model: a Gaussian copula creates a joint probability distribution between two or more variables which are both normal distributed variables.
请添加图片描述
请添加图片描述

One-factor correlation model: Now suppose we have many variables, V i ( i = 1 , 2 , . . . ) V_i(i = 1, 2,...) Vi(i=1,2,...). Each V i V_i Vi can be mapped to a standard normal distribution U i U_i Ui in the way we have described.
U i = a i F + 1 − a i 2 Z i Ui = a_iF +\sqrt{1- a_i^2}Z_i Ui=aiF+1ai2 Zi

  • F F F is a factor common to all the U i U_i Ui
  • Z i Z_i Zi is the component of U i U_i Ui that is unrelated to the common factor F F F (idiosyncratic). The Z i Z_i Zi corresponding to the different U i U_i Ui are uncorrelated with each other.
  • F ∼ N ( 0 , 1 ) ,    Z i ∼ N ( 0 , 1 ) F\sim N(0,1),\;Z_i\sim N(0,1) FN(0,1),ZiN(0,1)
  • a i a_i ai are parameters with values between − 1 -1 1 and + 1 +1 +1.
  • U i ∼ N ( 0 , 1 ) U_i \sim N(0,1) UiN(0,1)
  • ρ = E ( U i U j ) − E ( U i ) E ( U j ) S D ( U i ) S D ( U j ) → ρ = a i a j \rho=\frac{E(U_iU_j)-E(U_i)E(U_j)}{SD(U_i)SD(U_j)} \to \rho=a_ia_j ρ=SD(Ui)SD(Uj)E(UiUj)E(Ui)E(Uj)ρ=aiaj
    • S D ( U i ) = 0 ,    S D ( U j ) = 0 SD(U_i)=0,\;SD(U_j)=0 SD(Ui)=0,SD(Uj)=0
    • E ( U i ) = 0 ,    E ( U j ) = 0 E(U_i)=0,\;E(U_j)=0 E(Ui)=0,E(Uj)=0

Vasicek model - Unconditional default distribution
Assume the probability of default( P D PD PD ) is the same for all companies in a large portfolio.
The a i a_i ai are assumed to be the same for all i i i. Setting a i = a a_i=a ai=a
U i = a F + 1 − a 2 Z i U_i=aF+\sqrt{1- a^2}Z_i Ui=aF+1a2 Zi

The binary probability of the default distribution for company i i i for one year is mapped to a standard normal distribution U i U_i Ui. Company i i i defaults if:
U i ≤ N − 1 ( P D ) U_i \leq N^{-1}(PD) UiN1(PD)

P D = 1 % PD=1\% PD=1%, company i i i default if U i ≤ N − 1 ( 0.01 ) = − 2.33 U_i \leq N^{-1}(0.01)=-2.33 UiN1(0.01)=2.33
请添加图片描述
Vasicek model - Conditional default distribution
U i = a F + 1 − a 2 Z i U_i=aF+\sqrt{1- a^2}Z_i Ui=aF+1a2 Zi

The factor F F F can be thought of as an index of the recent health of the economy.

  • If F F F is high, the economy is doing well and all the U i U_i Ui will tend to be high (making defaults unlikely).
  • If F F F is low, all the U i U_i Ui will tend to be low so that defaults are relatively likely.
    U i ∼ N ( a F ,    1 − a 2 ) ⟶ ρ = a 2 U i ∼ N ( ρ F ,    1 − ρ ) U_i \sim N(aF,\;1-a^2) \stackrel{\rho=a^2}{\longrightarrow}U_i \sim N(\sqrt{\rho}F,\;1-\rho) UiN(aF,1a2)ρ=a2UiN(ρ F,1ρ)

请添加图片描述

Vasicek model
The default rate conditional n n n the factor F F F:
请添加图片描述
99.9 % 99.9\% 99.9% percentile worst case default rate(WCDR)

W C D R = N ( N − 1 ( P D ) − ρ N − 1 ( 0.001 ) 1 − ρ ) WCDR=N\left( \frac{N^{-1}(PD)-\sqrt{\rho}N^{-1}(0.001)}{\sqrt{1-\rho}} \right) WCDR=N(1ρ N1(PD)ρ N1(0.001))

Capital requirement = ( W C D R − P D ) × E A D × L G D \text{Capital requirement}=(WCDR-PD)\times EAD \times LGD Capital requirement=(WCDRPD)×EAD×LGD

A bank has a USD 100 100 100 million portfolio of loans with a PD of 0.75 % 0.75\% 0.75%. Assume a correlation parameter of 0.2 0.2 0.2. The recovery rate in the event of a default is 30 % 30\% 30%. What is the required regulatory capital using 99.9 99.9 99.9 percentile of the default rate given by the Vasicek model?

N − 1 ( 0.001 ) = − 3.0902    a n d    N − 1 ( 0.0075 ) = − 2.432 N^{-1}(0.001)=-3.0902\;and\;N^{-1}(0.0075)=-2.432 N1(0.001)=3.0902andN1(0.0075)=2.432

W C D R = N ( N − 1 ( P D ) − ρ N − 1 ( 0.001 ) 1 − ρ ) = N ( − 2.4324 + 0.2 × 3.0902 1 − 0.2 ) = N ( − 1.17 ) = 12.1 % WCDR=N\left( \frac{N^{-1}(PD)-\sqrt{\rho}N^{-1}(0.001)}{\sqrt{1-\rho}} \right)=N\left(\frac{-2.4324+\sqrt{0.2}\times 3.0902}{\sqrt{1-0.2}}\right)=N(-1.17)=12.1\% WCDR=N(1ρ N1(PD)ρ N1(0.001))=N(10.2 2.4324+0.2 ×3.0902)=N(1.17)=12.1%

Capital requirement = ( W C D R − P D ) × E A D × L G D = ( 12.1 % − 0.75 % ) × 100 × 70 % = 7.9    million \text{Capital requirement}=(WCDR-PD)\times EAD \times LGD=(12.1\%-0.75\%)\times 100 \times 70\%=7.9\;\text{million} Capital requirement=(WCDRPD)×EAD×LGD=(12.1%0.75%)×100×70%=7.9million

3.3 Economic Capital — CreditMetric

CreditMetrics is the model banks often use to determine economic capital. Under this model, each borrower is assigned an external or internal credit rating.

  • Step 1: The bank’s portfolio of loans is valued at the beginning of a one-year period.
  • Step 2: Use Monte Carlo simulation to model how ratings change during the year.
  • Step 3: The portfolio is revalued.
  • Step 4: The credit loss is calculated as the value of the portfolio at the beginning of the year minus the value of the portfolio at the end of the year.

CreditMetrics considers the impact of rating changes as well as defaults.

3.4 Risk Allocation — Euler’s Theorem

Euler’s theorem: can be used to divide many of the risk measures used by risk managers into their component parts.

If a risk measure meets homogeneity
Q i = Δ F Δ X i / X i ( Decomposition ) → F = ∑ i = 1 n Q i ( Combination ) Q_i=\frac{\Delta F}{\Delta X_i/X_i}(\text{Decomposition})\to F=\sum^n_{i=1}Q_i(\text{Combination}) Qi=ΔXi/XiΔF(Decomposition)F=i=1nQi(Combination)

  • Δ X i \Delta X_i ΔXi is a small change in variable i i i, Δ X / X i \Delta X/ X_i ΔX/Xi is a proportional change.
  • Δ F \Delta F ΔF is the resultant small change in F F F.
  • Q i Q_i Qi is the risk component decomposition.

Suppose that the losses from loans A and B have standard deviations of $ 2 2 2 and $ 6 6 6. The correlation between two loans is 0.5 0.5 0.5. The standard deviations of portfolio is $ 7.2111 7.2111 7.2111. Please calculate the dollar contribution of loan A and loan B to the whole portfolio risk.

Loan A:
If size of loan A is increase by 1 % 1\% 1% ( Δ X / X i = 1 % \Delta X/ X_i = 1\% ΔX/Xi=1%). The SD of loan A is 2 × 1.01 = 2.02 2\times1.01=2.02 2×1.01=2.02

Δ σ p = 2.0 2 2 + 6 2 + 2 × 2.02 × 6 × 0.5 − 7.2111 = 0.01388 \Delta \sigma_p=\sqrt{2.02^2+6^2+2\times2.02\times 6\times 0.5}-7.2111=0.01388 Δσp=2.022+62+2×2.02×6×0.5 7.2111=0.01388

Contribution Lona A = Δ F Δ X i / X i = 0.01388 / 1 % = 1.388 =\frac{\Delta F}{\Delta X_i/X_i}=0.01388/1\%=1.388 =ΔXi/XiΔF=0.01388/1%=1.388

Loan B:
If size of loan B is increase by 1 % 1\% 1% ( Δ X / X i = 1 % \Delta X/ X_i = 1\% ΔX/Xi=1%). The SD of loan B is 6 × 1.01 = 6.06 6\times1.01=6.06 6×1.01=6.06

Δ σ p = 2 2 + 6.0 6 2 + 2 × 2 × 6.06 × 0.5 − 7.2111 = 0.05826 \Delta \sigma_p=\sqrt{2^2+6.06^2+2\times2\times 6.06\times 0.5}-7.2111=0.05826 Δσp=22+6.062+2×2×6.06×0.5 7.2111=0.05826

Contribution Lona A = Δ F Δ X i / X i = 0.05826 / 1 % = 5.826 =\frac{\Delta F}{\Delta X_i/X_i}=0.05826/1\%=5.826 =ΔXi/XiΔF=0.05826/1%=5.826

3.5 Challenges to Measuring Credit Risk for Derivatives

Derivatives also give rise to credit risk:

  • The value of the contract in the future is uncertain.
  • Since the value of the contract can be positive or negative, counterparty risk is typically bilateral.
  • Netting agreements: all outstanding derivatives with a counterparty may be considered a single derivative in the event that the counterparty defaults.

3.5 Challenges to Quantifying Credit Risk

PD: Banks are faced with the problem of making both through-the-cycle estimates (to satisfy regulators) and point- in-time estimates (to satisfy their auditors).
LGD: the recovery rate is negatively correlated with the default rate.
EAD: derivative transactions need a relatively complex calculation (may contain wrong-way risk).
Correlations: are difficult to estimate.

Credit risk is only one of many risks facing a bank.

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值