- 博客(88)
- 收藏
- 关注
原创 C++ 部署的性能优化方法
在编写前后处理函数时,通常会多次用到一些变量,比如模型输入 tensor 的 shape,count 等等,若在每个处理函数中都重复计算一次,会增加部署时的计算量。
2025-04-28 18:27:26
1202
1
原创 征程6 YUV域降噪模块YNR简介
图像噪声(image noise)是[图像](https://zh.wikipedia.org/wiki/图像)中一种亮度或颜色信息的随机变化(被拍摄物体本身并没有),通常是电子噪声的表现。
2025-04-28 17:15:12
859
原创 征程 6 VIO Frame buffer管理
通过出错通路的 buffer 状态可知,PYM1 的输出 buffer 都在 USED 队列,说明底层 buffer 都被用户层拿走了,进而导致用户获取帧失败,需要用户查看自己的持有帧逻辑和归还逻辑;
2025-04-24 14:57:27
919
原创 【智驾中的大模型 -3】VLA 在自动驾驶中的应用
在上一篇文章中,我们深入探讨了 VLM 模型在自动驾驶中的应用。今天,我们就来全面介绍一下 VLA 模型在自动驾驶中的具体应用。
2025-04-20 22:21:20
1236
原创 征程 6 VIO 通路断流分析
自动驾驶场景中,常见的是多路感知通路,在不考虑应用获取释放帧异常操作的前提下,一般出现帧获取异常的情况,主要原因是通路中某段断流的情况,如何去准确的定位,对大部分客户来说,依赖我司的支持;针对这种情况,会列举几种断流日志分析;
2025-04-20 21:41:08
520
原创 征程 6|部署模型尾部 conv 输出 type/layout/scale 解读
本文使用 pytorch 框架,以 conv 为例,介绍如何同时满足 conv int32 + NCHW/NHWC 这两种情况。另外,专开一个章节介绍 scale 为 1 的原因。
2025-04-20 10:36:02
513
原创 【智驾中的大模型 -2】VLM 在自动驾驶中的应用
VLM 凭借其强大的融合能力,将视觉(如高清晰度的摄像头图像、精准的雷达数据)和语言(涵盖详细的地图信息、明确的交通标志、准确的驾驶指令)等多种类型的信息进行有机整合,从而使得自动驾驶系统在感知复杂的道路环境、进行精确的推理以及制定明智的决策等方面展现出更为卓越的智能化水平。
2025-04-14 22:41:04
927
原创 【轻量化】三个经典轻量化网络解读
轻量化网络旨在减少模型参数和计算量,同时保持较高准确率。为了降低设备能耗,提升实时性,轻量化网络结构在嵌入式设备等资源受限环境中广泛应用。
2025-04-09 16:09:29
874
原创 【征程 6】工具链 VP 示例为什么能运行
在上一篇文章[【征程 6】VP 简介与单算子实操](https://developer.horizon.auto/blog/12886) 中,介绍了 VP 是什么,并以单算子 rotate 为例,介绍了 VP API 使用方法
2025-04-01 14:10:52
1035
原创 征程 6 系统 power 状态机介绍
征程 6x 内部有 AON、MCU 和 Main 域三个电源域。其中 AON 为非下电状态需要一直供电的电源域,MCU 电源域用于给 Hsm 和 MCU 及其内部 IP 供电,Main 域给其他部分供电。
2025-04-01 12:14:35
323
原创 精度调优|conv+depth2space 替换 resize 指导
本文将介绍一种新的方法,可以有效提升上采样操作中的精度,解决传统 int8 精度量化带来的精度下降问题。
2025-03-29 14:14:51
865
原创 征程 6E mipi tx 系列之方案介绍
IDE(Image Display Engine)包含图像显示单元(Image Display Unit)、图像数据输出模块(MIPI CSI2 Device 和 MIPI DSI)
2025-03-29 12:19:08
648
原创 征程 6X CAMSYS 性能测试方案介绍
对于帧率、延迟,通过在驱动中创建 trace event,分别记录通路上的每个 IP,每帧开始处理(frame_start)和结束处理(frame_end)的时间戳信息和帧信息,来实现帧率计算和延迟统计
2025-03-22 21:16:41
752
原创 征程 6 VP简介与单算子实操
VP 模块主要用于模型的前后处理环节,在地平线统一架构中,多种硬件均已搭载了图像处理的算子,而 VP 模块将图像处理相关的硬件调用进行了封装, 通过设置 backend 来选择不同的硬件方案(若不指定 backend,UCP 会自动适配负载更低的处理单元),从而平衡开发板负载。
2025-03-18 21:59:39
933
原创 征程 6 基于 Linux 和 Node-Locked License 配置 DSP 开发环境
说明:该文档以征程 6上使用的Q8 DSP安装为例,同样的步骤在征程 5 上使用方法类似只是征程 6使用的DSP为VP6
2025-03-14 12:52:07
953
原创 手把手基于 MINI 数据集带你做一次板端精度评估
本文以 bevformer 精度评估为例,引到读者从评测环境构建到评测数据准备,最后到精度评测试试和最终结果计算的整个流程,以期给您一个进行板端精度评测的一个流程全貌。
2025-03-11 14:00:29
887
原创 征程 6 工具链 BEVPoolV2 算子使用教程 【2】-BEVPoolV2 QAT 链路实现示例
此篇帖子将展示 征程 6 工具链 BEVPoolV2 单算子 QAT 链路的实现范例,以进一步增进用户对 BEVPoolV2 算子使用的认知。# 2.QAT 代码实现
2025-03-10 20:20:29
839
原创 征程 6 工具链 BEVPoolV2 算子使用教程 1 - BEVPoolV2 算子详解
当前,地平线 征程 6 工具链已经全面支持了 BEVPooling V2 算子,并与 mmdetection3d 的实现完成了精准对齐。然而,需要注意的是,此算子因其内在的复杂性以及相关使用示例的稀缺,致使部分用户在实际运用过程中遭遇了与预期不符的诸多问题。
2025-03-04 21:16:55
820
原创 DeepSeek 1.5B蒸馏模型的J6部署(Llama方式)
DeepSeek 是一款基于人工智能的搜索引擎,旨在提升用户的搜索体验。它利用先进的自然语言处理技术,通过理解查询的上下文和意图,为用户提供更精确、相关的搜索结果。
2025-03-01 19:58:13
1007
原创 YOLOv10 解析与地平线 征程 6 模型量化
为了实现整体效率 - 准确率驱动的模型设计,研究团队从效率、准确率两方面分别提出改进方法。为了提高效率,该研究提出了轻量级分类 head、空间通道(spatial-channel)解耦下采样和排序指导的块设计,以减少明显的计算冗余并实现更高效的架构。为了提高准确率,研究团队探索了大核卷积并提出了有效的部分自注意力(partial self-attention,PSA)模块来增强模型能力,在低成本下挖掘性能改进的潜力。
2025-02-25 21:31:44
877
原创 YOLOv5 的量化及部署 - RGB 专题
本文以基于色选机数据集训练出的YOLOv5n模型为例,介绍如何使用PTQ进行量化编译并使用C++进行全流程的板端部署。介绍重点在于输入数据为RGB和NHWC时的处理方式。
2025-02-23 17:04:34
732
原创 地平线 3D 目标检测 bev_sparse 参考算法-V2.0
在自动驾驶视觉感知系统中,为了获得环绕车辆范围的感知结果,通常需要融合多摄像头的感知结果。目前更加主流的感知架构则是选择在特征层面进行多摄像头融合。其中比较有代表性的路线就是这两年很火的 BEV 方法,继 Tesla Open AI Day 公布其 BEV 感知算法之后,相关研究层出不穷,感知效果取得了显著提升,BEV 也几乎成为了多传感器特征融合的代名词。
2025-02-23 15:52:21
853
原创 深度剖析多任务模型 QAT 策略
为了节省端侧计算资源以及简化部署工作,目前智驾方案中多采用动静态任务融合网络,地平线也释放了 Lidar-Camera 融合多任务 BEVFusion 参考算法。
2025-02-19 15:34:42
656
原创 [征程 6 编译优化] Transformer 模型在 征程 6 平台上的高效支持
相对于传统 CNN 模型来说,Transformer 模型的最大的一个特点就是灵活性。这个灵活性主要体现在模型中穿插大量的数据重排操作,即 Reshape 和 Transpose。
2025-02-15 17:39:29
842
原创 智能驾驶中的 感知 模块介绍
在自动驾驶系统中,感知技术是核心基础之一。感知技术为车辆提供环境信息,使其能够实现对周围环境的理解、分析与决策,从而保证安全性和高效性。通常大家对感知的介绍停留在“眼睛”的作用,但这样的解释太宽泛了例如感知到底是什么?由哪些模块组成?输入输出有什么含义?数据怎么流转的?会经历哪些硬件模块?下面来简单看一下。
2025-02-12 20:28:48
1064
原创 征程 6 相比征程 5 对算子支持扩展的具体案例讲解
征程 6 相比于征程 5,在整体架构上得到了升级,相对应的,算法工具链的算子支持也得到了扩充,无论是算子支持的数量,还是 BPU 约束条件,征程 6 都有明显的加强,这就使得过去在征程 5 上无法部署的算法得以在征程 6 上成功部署。本文就以双目深度估计中比较经典的 CGI 算法为例,进行征程 5 和征程 6 算法工具链的编译部署对比。
2025-02-10 22:30:53
1045
原创 地平线轨迹预测 QCNet 参考算法-V2.0
轨迹预测任务的目的是在给定历史轨迹的情况下预测未来轨迹。这项任务在自动驾驶、智能监控、运动分析等领域有着广泛应用。
2025-02-08 19:43:45
1042
原创 征程 6 参考算法使用指南
征程 6 参考算法在覆盖 征程 5 已有的分类、检测和分割等高效参考算法的基础上,新增了面向 征程 6 平台的高效基础算法 Backbone
2025-02-08 13:43:40
1538
原创 地平线 3D 目标检测 Bevformer 参考算法-V2.0
BEVFormer 是当前热门的自动驾驶系统中的 3D 视觉感知任务模型。BEVFormer 是一个端到端的框架,BEVFormer 可以直接从原始图像数据生成 BEV 特征,无需依赖于传统的图像处理流程。
2025-02-07 21:23:14
827
原创 更快、更强!地平线ViG,基于视觉Mamba的通用视觉主干网络
在COCO目标检测与实例分割数据集上,我们将ImageNet-1K上训练好的权重加载到Cascade-RCNN框架中,使用Vim作为骨干网络进行特征提取,如表3所示,Vim取得相对于Transformer的DeiT更好的检测框精度和实例分割精度。如图1所示,Vim的优越的效率足以支持更细粒度的微调,在通过细粒度微调后,与基于SSM的S4ND-ViT-B[13]相比,Vim在参数数量减小3倍的情况下达到了相似的精度,Vim-Ti+,Vim-S+和Vim-B+的结果均有所提高。
2025-01-13 22:16:25
873
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人