吴恩达机器学习课程CODE1:线性回归算法(应用平方误差与梯度下降)

1.线性回归问题课程笔记
1)简单介绍

线性回归问题需要有一个真实的直线来对给定x求出y,但现在我们不知道这条直线,需要根据训练集去拟合一条无限逼近这条真实直线的直线,以用于预测。
如图根据训练集,力求得到一条可以拟合尽量多点的直线:
拟合直线

2)公式表示

假设函数: h θ ( x ( i ) ) = θ 0 + θ 1 x h_\theta (x^{(i)})=\theta _0+\theta _1x hθ(x(i))=θ0+θ1x
θ 0 , θ 1 \theta _0, \theta _1 θ0,θ1是其的两个参数,即待求的两个参数

代价函数(损失函数): J ( θ 0 , θ 1 ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J(θ_0,θ_1)=\frac{1}{2m}\sum_{i=1}^{m}(h_\theta (x^{(i)})-y^{(i)})^2 J(θ0,θ1)=2m1i=1m(hθ(x(i))y(i))2
应用平方误差代价函数(Squared error function --解决回归问题常用的手段)

目标: m i n i m i z e θ 0 , θ 1 J ( θ 0 , θ 1 ) minimize_{θ_0,θ_1}J(θ_0,θ_1) minimizeθ0,θ1J(θ0,θ1) ------最小化损失函数J

3)梯度下降

最小化损失函数可应用梯度下降算法解决。
取某一个参数如 θ 1 \theta _1 θ1,把损失函数看做 J ( θ 1 ) J(\theta_1) J(θ1),则该曲线如图:
梯度下降算法
根据梯度下降算法使结果收敛到(1,0)点(当前点在该点左边则 θ \theta θ加上某个值,小步向 J ( θ ) J(\theta) J(θ)最小点(1,0)靠近;当前点在该点右边则 θ \theta θ减去某个值,小步向 J ( θ ) J(\theta) J(θ)最小点(1,0)靠近)
θ = 0 \theta =0 θ=0时, J ( θ ) J(\theta) J(θ)取最小值,即实现目标,此 θ = 1 \theta=1 θ=1即为所求。

梯度下降算法描述如下:
r e p e a t   u t i l   c o n v e r g e n c e { repeat\ util\ convergence\{ repeat util convergence{
            θ j : = θ j − α ∂ ∂ θ j J ( θ 0 , θ 1 ) \ \ \ \ \ \ \ \ \ \ \ \theta_j :=\theta_j-\alpha\frac{\partial}{\partial \theta_j}J(\theta_0, \theta_1)            θj:=θjαθjJ(θ0,θ1)
            ( f o r   j = 0   a n d   j = 1 ) \ \ \ \ \ \ \ \ \ \ \ (for\ j=0\ and\ j=1)            (for j=0 and j=1)
} \} }

将上一部分的 J ( θ 0 , θ 1 ) J(θ_0,θ_1) J(θ0,θ1)代入,求偏导该梯度下降可写为:
r e p e a t   u t i l   c o n v e r g e n c e { repeat\ util\ convergence\{ repeat util convergence{
            θ 0 : = θ 0 − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) \ \ \ \ \ \ \ \ \ \ \ \theta_0 :=\theta_0-\alpha\frac{1}{m}\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})            θ0:=θ0αm1i=1m(hθ(x(i))y(i))
            θ 1 : = θ 1 − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) ⋅ x ( i ) \ \ \ \ \ \ \ \ \ \ \ \theta_1 :=\theta_1-\alpha\frac{1}{m}\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})\cdot x^{(i)}            θ1:=θ1αm1i=1m(hθ(x(i))y(i))x(i)

} \} }
(下一部分代码实现主要应用这两个公式,使 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) \frac{1}{m}\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)}) m1i=1m(hθ(x(i))y(i))无限趋近于0作为循环终止条件,即 J ( θ ) J(\theta) J(θ)导数值趋近于0、 θ \theta θ的变化极小)

注: 所有参数同步更新(simultaneous update ------梯度下降中一种最常用的方法),即
t e m p 0 : = θ 0 − α ∂ ∂ θ 0 J ( θ 0 , θ 1 ) temp0 :=\theta_0-\alpha\frac{\partial}{\partial \theta_0}J(\theta_0, \theta_1) temp0:=θ0αθ0J(θ0,θ1)
t e m p 1 : = θ 1 − α ∂ ∂ θ 1 J ( θ 0 , θ 1 ) temp1 :=\theta_1-\alpha\frac{\partial}{\partial \theta_1}J(\theta_0, \theta_1) temp1:=θ1αθ1J(θ0,θ1)
θ 0 = t e m p 0 \theta_0=temp0 θ0=temp0
θ 1 = t e m p 1 \theta_1=temp1 θ1=temp1

2.代码实现
1)获得回归模型
import pandas as pd
import numpy as np

dataset = pd.read_csv('./datasetsxy.csv')
col = dataset.columns.values.tolist()  # 把每一列转换成一个list
datax = np.array(dataset[col[0]])
datay = np.array(dataset[col[1]])

m = len(datax)  # the number of samples

a = 0.001  # 学习率初始化为0.001
b0 = 0
b1 = 1
while (1):
    # 此处为梯度下降算法
    sum0 = 0
    sum1 = 0
    for i in range(m):  
        sum0 = sum0 + (b0 + b1 * datax[i] - datay[i])
        sum1 = sum1 + (b0 + b1 * datax[i] - datay[i]) * datax[i]
    Jsum0 = (1 / m) * sum0  # J(θ)的导数
    Jsum1 = (1 / m) * sum1
    
    c0 = (Jsum0 < 0.001)  # 导数接近0时,也可以理解为循环到θ值变化很小时
    c1 = (Jsum1 < 0.001)
    if c0 & c1:
        break

    b0 = b0 - a * Jsum0
    b1 = b1 - a * Jsum1

print('y = ' ,b1 ,'x+', b0)

2)点和线(第一部分第一个图)
dataset = pd.read_csv('./datasetsxy.csv')
col = dataset.columns.values.tolist()
datax = np.array(dataset[col[0]])
datay = np.array(dataset[col[1]])

plt.ion()
fig = plt.figure()
ax1 = fig.add_subplot(1, 1, 1)
ax1.set_title('Result Analysis')
ax1.set_xlabel('x')
ax1.set_ylabel('y')
plt.xlim(xmax=10, xmin=0)
ax1.scatter(datax, datay, s=20, c='k', marker='X', label='Training Data')  # 画点
ax1.plot(datax, datax, 'r', label='Prediction')  # 画线
ax1.legend(loc=2)  # 标注点线等的含义
plt.show()
plt.waitforbuttonpress()
3)二次曲线(第一部分第二个图)
plt.ion()
fig = plt.figure()
ax1 = fig.add_subplot(1, 1, 1)
ax1.set_title('Result Analysis')
ax1.set_xlabel('θ')
ax1.set_ylabel('J(θ)')
plt.xlim(xmax=2, xmin=0)
plt.ylim(ymax=2.6, ymin=0)
x = np.arange(0, 3, 0.05)
ax1.plot(x, 2*x*x-4*x+2)
plt.show()
plt.waitforbuttonpress()

欢迎讨论>_<

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值