HDOJ -- 1869六度分离

六度分离
Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Description

1967年,美国著名的社会学家斯坦利·米尔格兰姆提出了一个名为“小世界现象(small world phenomenon)”的著名假说,大意是说,任何2个素不相识的人中间最多只隔着6个人,即只用6个人就可以将他们联系在一起,因此他的理论也被称为“六度分离”理论(six degrees of separation)。虽然米尔格兰姆的理论屡屡应验,一直也有很多社会学家对其兴趣浓厚,但是在30多年的时间里,它从来就没有得到过严谨的证明,只是一种带有传奇色彩的假说而已。 
Lele对这个理论相当有兴趣,于是,他在HDU里对N个人展开了调查。他已经得到了他们之间的相识关系,现在就请你帮他验证一下“六度分离”是否成立吧。

Input

本题目包含多组测试,请处理到文件结束。 
对于每组测试,第一行包含两个整数N,M(0<N<100,0<M<200),分别代表HDU里的人数(这些人分别编成0~N-1号),以及他们之间的关系。 
接下来有M行,每行两个整数A,B(0<=A,B<N)表示HDU里编号为A和编号B的人互相认识。 
除了这M组关系,其他任意两人之间均不相识。 

Output

对于每组测试,如果数据符合“六度分离”理论就在一行里输出"Yes",否则输出"No"。

Sample Input

8 7
0 1
1 2
2 3
3 4
4 5
5 6
6 7
8 8
0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 0

Sample Output

Yes
Yes
这道题的确跟HDOJ2544最短路类似,改改代码就行了。。
解题思路:把认识的人看成距离为1,求的任意两个人之间的“最短距离”跟7相比较(隔着6个人),如果有一种大于7则不满足。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 0x3f3f3f
#define MAXN 105
using namespace std;
int m,n;
int pri[MAXN][MAXN];
void floyd(){
	for(int i=0;i<n;i++)//下标都从0开始!! 
	for(int j=0;j<n;j++)
	for(int k=0;k<n;k++)
		pri[j][k]=min(pri[j][k],pri[j][i]+pri[i][k]);
}
int main(){
    while(~scanf("%d%d",&n,&m)){
    	for(int i=0;i<n;i++)
    	for(int j=0;j<n;j++){
    		if(i==j)
    			pri[i][j]=0;//对角线即自己到本身的距离为0 
    		else
    			pri[i][j]=INF;//全部初始化为无穷 
		}
		int a,b;
		for(int i=0;i<m;i++){
			scanf("%d%d",&a,&b);
				pri[a][b]=pri[b][a]=1;//所有认识的人之间距离设为1 
		}
		floyd();
		int i;
		for(i=0;i<n;i++)
			for(int j=0;j<n;j++)
				if(pri[i][j]>7){
					printf("No\n");
					i=n+1;
					break;//输出挺坑的。。 
				}
		if(i==n)
		printf("Yes\n");
	}
    return 0;  
}  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值