- 博客(736)
- 资源 (3)
- 收藏
- 关注
原创 DreamCar运行笔记
文章标题:DreamCar: Leveraging Car-specific Prior for in-the-wild 3D Car ReconstructionDreamCar,能够在给定少量图像甚至单张图像的情况下重建高质量的3D汽车。为了使生成模型更具泛化性,我们收集了一个名为Car360的汽车数据集,包含超过5600辆汽车。利用这个数据集,我们使生成模型对汽车更加鲁棒。我们使用特定于汽车的生成先验,通过分数蒸馏采样来引导重建。为了进一步补充监督信息,我们利用汽车的几何和外观对称性。
2024-09-04 17:08:34 357
原创 Sigma File Manager:为Windows和Linux用户打造的现代文件管理器,超越传统的文件管理系统
主题自定义:根据个人喜好调整界面主题,提升使用体验。扩展插件:利用社区提供的扩展插件,增强文件管理功能,如增强文件搜索、更丰富的云同步选项等。
2024-09-01 16:40:21 738
转载 DreamCar:moving-froward场景中的3D汽车重建(高质量生成)
自驾行业通常雇用专业艺术家来制作精美的3D汽车模型。然而,制作大规模的数字资产成本高昂。由于已经有许多包含大量汽车图像的数据集,我们专注于从这些数据集中重建高质量的3D汽车模型。然而,这些数据集只包含前行场景中汽车的一侧图像。我们尝试使用现有的生成模型提供更多的监督信息,但由于这些模型是在合成数据集上训练的,而不是专门针对汽车的数据集,因此难以在汽车上泛化。此外,在处理野外图像时,由于相机姿态估计的误差较大,重建的3D汽车纹理会出现错位。这些限制使得以前的方法难以重建完整的3D汽车。
2024-09-01 13:10:59 58
原创 VScode配置代理服务器
在终端执行如下命令,建议先切换到国内源,如huaweicloud mirrors。如果通过ubuntu-drivers devices看不到NVidia显卡,则添加。
2024-08-30 13:28:36 662 1
原创 Linux安装显卡驱动
本文详细阐述了在Linux系统中安装显卡驱动的步骤和注意事项。首先,文章介绍了显卡驱动的重要性,以及为什么需要安装或更新显卡驱动。接着,针对不同类型的显卡(如NVIDIA、AMD等),文章提供了具体的安装步骤和命令,包括添加软件源、下载驱动、安装驱动以及配置环境等。此外,文章还提醒读者在安装过程中可能遇到的问题,如依赖问题、权限问题等,并给出了相应的解决方案。最后,文章总结了安装显卡驱动的关键点,并强调了正确安装显卡驱动对于提升Linux系统图形性能的重要性。
2024-08-24 14:30:03 9933 1
原创 Ubuntu 20.04安装中文输入法
本文旨在详细介绍在Ubuntu 20.04操作系统中安装中文输入法的步骤和方法。我们将从选择适合的中文输入法软件、下载与安装过程、配置输入法设置以及解决可能遇到的问题等方面展开讲解,帮助用户轻松实现在Ubuntu 20.04系统下流畅输入中文的需求。无论你是Ubuntu的新手还是有一定经验的用户,本文都将为你提供清晰、实用的指导,让你能够轻松享受在Ubuntu 22.04上输入中文的便捷体验。
2024-08-23 21:09:19 804
转载 有限视角重叠和不准确外参标定下的多相机SLAM的鲁棒初始化
本文提出了一种当相机只有有限的公共视野和不准确的外参标定情形下的用于多相机视觉SLAM系统的鲁棒初始化方法。有限的共同视野导致只有一些特征可以在相机之间匹配上。离线标定后,由于振动或相机错误放置而导致的不准确的外部位姿,使得三角化种子3D点以成功初始化SLAM系统变得更加困难。没有像大多数多相机系统那样将外参设为定值以用于特征匹配和3D点三角化,我们提出将不准确的外参作为软约束来适应标定误差。我们的初始化方法包括在不同相机之间匹配和在两个关键帧之间匹配两个阶段。这两个阶段都涉及优化包含来自不准确标定参数的外
2024-08-14 15:10:36 300
原创 Ubuntu安装cuda
本文详细介绍了在 Ubuntu 系统上安装 CUDA 的全过程。从安装前的系统要求和准备工作,到具体的安装步骤,包括下载 CUDA 安装文件、处理依赖关系、执行安装命令以及配置环境变量等。旨在为需要在 Ubuntu 中安装 CUDA 以进行深度学习、图形计算等工作的用户提供清晰、准确且可操作的指导。
2024-08-14 09:08:25 606
原创 Ubuntu安装Anaconda3
本文详细阐述了在 Ubuntu 系统中安装 Anaconda3 的完整流程。包括 Anaconda3 安装包的获取途径,具体安装过程中的每一个步骤及注意事项,还有安装后的环境变量设置和安装成功的验证方法。旨在为 Ubuntu 用户提供清晰、易懂且准确的 Anaconda3 安装指南,帮助读者顺利完成安装,为后续的 Python 开发和数据处理工作奠定基础。
2024-08-13 20:47:41 568
原创 Ubuntu视频工具
VLC Media Player(VLC多媒体播放器),最初命名为VideoLAN客户端,是VideoLAN品牌产品,是VideoLAN计划的多媒体播放器。它支持众多音频与视频解码器及文件格式,并支持DVD影音光盘,VCD影音光盘及各类流式协议。它也能作为unicast或multicast的流式服务器在IPv4或IPv6的高速网络连接下使用。它融合了FFmpeg计划的解码器与libdvdcss程序库使其有播放多媒体文件及加密DVD影碟的功能。
2024-08-13 17:18:16 880
原创 ISAM2运行流程
本文深入剖析了 ISAM2 的运行流程。详细阐述了从启动到执行任务的各个关键环节,包括初始化设置、数据加载与处理、核心算法的运作以及结果的输出与反馈。通过清晰的步骤拆解和原理说明,帮助读者全面理解 ISAM2 的运行机制,为相关研究和应用提供有价值的参考。
2024-08-12 15:27:37 2615
原创 S3Gaussian运行笔记
文章标题:S街道场景的逼真3D重建是开发自动驾驶现实世界模拟器的一项关键技术。尽管神经辐射场(NeRF)在驾驶场景中具有有效性,但由于3D高斯Splatting(3DGS)的速度更快且表示更明确,它成为了一个有前景的方向。然而,大多数现有的street 3DGS方法需要跟踪的3D车辆bounding box来分解静态和动态元素以实现有效重建,这限制了它们在户外场景和开集中的应用。
2024-08-08 15:57:50 336 1
原创 RAFT: Recurrent All-Pairs Field Transforms for Optical Flow
本文提出了Recurrent All-Pairs Field Transforms(RAFT), 一个光流估计的深度神经网络. RAFT 提取像素级的特征, 为所有像素建立多尺度 4D 关联信息, 通过查找4D关联信息, 循环迭代的更新光流场. 本文算法在KITTI、Sintel数据集上取得了state-of-the-art的表现. 同时, RAFT在多个数据集上有很强的泛化能力, 并且在训练速度、参数数量、推理时间上都有很高的效率.
2024-08-05 21:26:39 825
原创 CL-MVSNet: Unsupervised Multi-view Stereo with Dual-level Contrastive Learning
Abstract无监督多视图立体方法最近取得了可喜的进展。然而,以前的方法主要依赖于光度一致性假设,这可能会受到两个限制:低识别度的区域和依赖于视图的效果,例如低纹理区域和反射。为了解决这些问题,我们提出了一种新的双对比学习方法,称为 CL-MVSNet。具体来说,我们的模型将两个对比分支集成到无监督 MVS 框架中,以构建额外的监督信号。一方面,我们提出了图像级对比分支来引导模型获得更多的上下文感知,从而在不可区分的区域中实现更完整的深度估计。
2024-08-05 09:17:26 1033
原创 plyfile安装与使用
plyfile库提供了读取和写入PLY文件的功能,方便开发人员对三维模型进行处理和分析。简单易用:plyfile库提供了简单易用的API,使得开发人员可以快速读取和写入PLY文件。功能丰富:plyfile库支持读取和写入PLY文件的各种属性,如顶点坐标、法线、颜色、纹理坐标等。高效性能:plyfile库使用C语言编写,具有较高的执行效率,能够处理大规模的PLY文件。跨平台支持:plyfile库可以在多个操作系统上运行,包括Windows、Linux和macOS等。
2024-07-25 19:53:32 393
原创 RoMe:通过网格表示实现大规模道路表面重建
本文介绍了RoMe:通过网格表示实现大规模道路表面重建。大规模道路表面重建对自动驾驶系统而言越来越重要,因为它有效地提供了有价值的训练和测试数据。在本文中,我们介绍了一种简单但有效的方法RoMe,用于通过网格表示进行大规模道路表面重建。为了简化问题,RoMe将三维道路表面分解为三角剖面和多层感知网络来隐式地建模道路高度。为了保留精细的表面细节信息,每个网格顶点具有两个额外的属性,即颜色和语义。为了提高RoMe在大规模环境中的效率,本文提出了一种新型的路径点采样方法。
2024-07-22 19:57:40 727
原创 数据闭环的核心-Auto-labeling方案分享
在实际工作中,自动驾驶的数据是非常重要的, 如何高效低成本的获得高质量的数据集成为了自动驾驶企业的核心竞争力。随着自动驾驶感知技术的不断发展,对于标注的要求也越来越高,很多标注任务也越来越难。Camera/Lidar 联合标注,3d 语义分割,最近大火的多Camera BEV,如何向特斯拉那样,完成vector space 的自动化标注,目前也没有看到有哪个国内公司能做的。
2024-07-22 01:16:05 521
原创 GaussianPro运行笔记
3D高斯分布(3DGS)最近以其高保真度和效率彻底改变了神经渲染领域。然而,3DGS在很大程度上依赖于运动结构(SfM)技术生成的初始化点云。当处理不可避免地包含无纹理表面的大型场景时,SfM技术无法在这些表面中产生足够的点,并且无法为3DGS提供良好的初始化。因此,3DGS面临优化困难和渲染质量低的问题。在本文中,受经典多视图立体 (MVS) 技术的启发,我们提出了GaussianPro,这是一种应用渐进传播策略来指导3D高斯的致密化的新颖方法。
2024-07-18 09:59:46 771 3
转载 机器学习理论基础到底有多可靠?
总体而言,因果关系仍然是一个令人沮丧的追求,其中当前的方法通常不能满足我们想要提出的问题,除非这些问题可以通过随机对照试验进行探索,或者它们恰好适合某些框架(例如,作为“自然实验”的偶然结果)。尽管如此,对于听起来像是一个奇特的概念(大致概括为:“将模型引入数据,而不是将数据引入模型”),FL 是有效的,并且在键盘文本预测和个性化新闻推荐等领域有切实的成功案例. FL 背后的基本理论和技术似乎足以让 FL 得到更广泛的应用。理论理解程度高的方法往往具有公式化的实现,具有强大的理论基础和可预测的结果。
2024-07-11 19:43:19 222
原创 深度学习中的特征融合方式
concat是通道数叠加,描述图像本身的特征增加了,而每一特征下的信息是没有增加。add为简单的像素叠加,通道不变;add后描述图像的特征下的信息量增多了,但是描述图像的维度本身并没有增加,只是每一维下的信息量在增加,这显然是对最终的图像的分类是有益的。特征add的时候就是增加特征的信息量,特征concat的时候就是增加特征的数量,注重细节的时候使用add,注重特征数量的时候使用concat。作用:Concate操作用于将两个或多个张量在某个维度上连接在一起,生成一个更大的张量。
2024-07-11 19:27:00 1349
原创 HUGS运行笔记
基于 RGB 图像对城市场景进行整体理解是一个具有挑战性但又很重要的问题。它包括理解几何和外观,以实现新颖的视图合成、解析语义标签和跟踪移动物体。尽管取得了长足的进步,但现有方法通常侧重于此任务的特定方面,并且需要额外的输入,例如 LiDAR 扫描或手动注释的 3D 边界框。在本文中,我们介绍了一种利用 3D 高斯 Splatting 进行整体城市场景理解的新型管道。我们的主要思想涉及使用静态和动态 3D 高斯的组合来联合优化几何、外观、语义和运动,其中移动物体的姿势通过物理约束进行正则化。
2024-07-11 17:17:25 522 4
原创 Hugging Face使用笔记
Hugging Face Hub和 Github 类似,都是Hub(社区)。Hugging Face可以说的上是机器学习界的Github。hugging face在NLP领域最出名,其提供的模型大多都是基于Transformer的。
2024-07-09 09:58:25 1809
原创 Text2Street:犀利的街景生成神器,车道拓扑、目标布局、天气条件全都有!
文本到图像生成,作为计算机视觉的一个重要任务,旨在仅基于文本描述生成连贯的图像。近年来,针对常见场景(如人物和目标)的文本到图像生成已经付出了很多努力。特别是随着扩散模型的出现,取得了显著进展。然而,在专业领域生成图像同样具有重要价值,包括自动驾驶、医学图像分析、机器人感知等。对于街景的文本到图像生成在自动驾驶感知和地图构建的数据生成方面具有特殊重要性,但目前仍相对未被充分探索。街景文本到图像生成作为一个尚未充分开发的任务,面临着几个严峻的挑战,可以分为三个主要方面。
2024-06-17 13:27:27 1053
原创 DriveWorld:一个预训练模型大幅提升检测+地图+跟踪+运动预测+Occ多个任务性能
以视觉为中心的自动驾驶技术近期因其较低的成本而引起了广泛关注,而预训练对于提取通用表示至关重要。然而,当前的以视觉为中心的预训练通常依赖于2D或3D预训练任务,忽视了自动驾驶作为4D场景理解任务的时序特征。这里通过引入一个基于世界模型的自动驾驶4D表示学习框架“DriveWorld”来解决这一挑战,该框架能够从多摄像头驾驶视频中以时空方式进行预训练。
2024-06-11 12:50:16 1435
原创 Point-LIO:鲁棒高带宽激光惯性里程计
现有系统都是基于帧的,类似于VSLAM系统,频率固定(例如10Hz), 但是实际上LiDAR是在不同时刻进行顺序采样,然后积累到一帧上,这不可避免地会引入运动畸变,从而影响建图和里程计精度。此外,这种低帧率会增加延时,限制系统带宽(里程计带宽的定义类似动态系统的带宽,即系统增益降至0.707以下的频率,表示里程计在能够满意地估计时可以运动多快)。1) 提出了一种逐点(point-wise) LIO框架,该框架在实际采样时间融合激光雷达点,而不会累积到帧中。去除点累积消除了帧内运动失真,并允许以接近点采样率的
2024-06-08 17:46:33 1647
原创 Large-Scale LiDAR Consistent Mapping using Hierarchical LiDAR Bundle Adjustment
重建精确一致的大规模激光雷达点云地图对于机器人应用至关重要。现有的基于位姿图优化的解决方案,尽管它在时间方面是有效的,但不能直接优化建图的一致性。激光雷达集束调整(BA)最近被提出来解决这个问题;但是在大尺度规模建图上太费时间了。为了解决这一问题,本文提出了一种适用于大尺度地图的全局一致的高效建图方法。我们提出的工作由自底向上的分层BA和自顶向下的位姿图优化组成,结合了两种方法的优点。通过分层设计,我们用比原始BA小得多的Hessian矩阵来解决多个BA问题;
2024-06-08 17:43:23 1070
原创 SLAM中线特征的参数化和求导
众所周知,线特征比点特征可以提供更多的约束条件,并且在某些场合下比点特征要鲁棒。但是如果我们想要把线特征加入到SLAM系统中面临的是参数化和优化求导。这篇文章介绍了贺博的PL-VIO中线特征的参数化和求雅克比。下面我们就来详细介绍一下空间直线的两种参数化方法:Plücker参数化方法,直线正交表示方法。为什么需要两种参数化方法呢?因为空间中的直线有4个自由度,而Plücker参数化方法需要使用6个参数表示直线,这样就会导致过参数化,过参数化在优化的时候就需要采用带约束的优化,不太方便。于是引入了可以用4
2024-06-06 21:17:40 2083 2
原创 FreeReg运行笔记
文章标题:FREEREG: IMAGE-TO-POINT CLOUD REGISTRATION LEVERAGING PRETRAINED DIFFUSION MODELS AND MONOCULAR DEPTH ESTIMATORS匹配是图像到点云配准的基本问题。然而,由于图像和点之间的模态差异,通过现有的特征匹配度量学习方法很难学习鲁棒性和判别性的跨模态特征。我们建议首先通过预训练的大型模型来统一图像和点云之间的模态,然后在同一模态内建立鲁棒的对应关系,而不是在跨模态数据上应用度量学习。
2024-06-06 12:40:27 469 12
原创 Cartographer学习笔记
Cartographer 是一个跨多个平台和传感器配置提供 2D 和 3D 实时同步定位和地图绘制 (SLAM) 的系统。
2024-06-06 12:39:39 572 1
原创 VSCode插件EditorConfig for VS Code
编辑器本身是不支持 EditorConfig 代码格式化的,需要安装插件才可以正常使用 EditorConfig 格式化代码。
2024-06-06 12:34:56 535
原创 git rebase
首先理解这个rebase,它的意思是re base,翻译过来就是“重新基于”。意义是:重新整理当前分支的开发线,使其变成基于某个开发节点的开发线。
2024-06-06 12:32:58 652
原创 Jupyter Notebook学习笔记
Jupyter Notebook是基于网页的用于交互计算的应用程序。其可被应用于全过程计算:开发、文档编写、运行代码和展示结果。——Jupyter Notebook官方介绍cyber_record play -f data显示记录信息cyber_record info data
2024-06-03 13:54:16 1069 1
原创 Github上一款开源、简洁、强大的任务管理工具:Condution
Condution 是一款功能强大、简洁易用的开源任务管理工具,它可以帮助用户有效地管理日常任务,提高工作效率。如果您正在寻找一款免费、易于使用的任务管理工具,那么 Condution 是一个不错的选择。Github地址:GitHub: https://github.com/Shabang-Systems/Condution。
2024-06-03 13:05:27 2327 1
原创 VSCode插件Sort Lines
Sort Lines是一款VSCode中的扩展,可以帮助你对所选文本或整个文件中的行进行排序。可以给你按字母大小排序(升序、降序),也可以进行排序+去重。而且还能将所有文本打乱顺序。做短文本分类的训练,清洗数据集的时候,这个工具大有用处。
2024-06-03 12:49:45 484
原创 Patchwork++:基于点云的快速、稳健的地面分割方法
传统数学方法,采用求反射梯度与地面对比的思路,对于高度有差别的平面难以识别(如低矮路沿),分割出的地面不是很合适。论文提出一种鲁棒性很强的分割方法,基于 Patchwork 的思路进行改进,自适应地调整参数,效果提升明显,运行速度极快。对地面分割做数学建模:对于所有的点云表示为,对点集进行二分类,分为G地面和N非地面,其中包括车辆,行人,植被,墙体等。
2024-06-03 09:45:53 1069
原创 Anaconda使用问题汇总
本文聚焦于 Anaconda 的使用问题。文中详细梳理了用户在运用 Anaconda 过程中常见的各类困扰,包括环境配置错误、包安装与更新异常、版本兼容性难题以及运行时出现的各种错误提示等。通过对这些问题的深入剖析,旨在为读者提供全面的解决方案和实用的应对策略,帮助大家更顺畅地使用 Anaconda 进行开发和数据处理工作。
2024-06-01 00:42:30 312
原创 VSCode Prettier - Code formatter代码格式化
在项目根目录下创建一个prettier配置方案文件,一般命名为.prettierrc,这里我就创建一个.prettierrc.js文件;然后在这个.prettierrc.js文件中配置规则,相关配置如下:useTabs: false, // 采用tab缩进还是空白缩进tabWidth: 2, // Tab键宽度printWidth: 80, // 宽度限制singleQuote: false, //字符串是否使用单引号semi: false, //行位是否使用分号。
2024-06-01 00:37:21 843
原创 解析自动驾驶算法四大模块的问题与后续发展
自动驾驶涉及技术方方面面。一个成熟的自动驾驶系统主要分为软硬两部分,硬件包括但不限于计算单元、传输网口、传感器本身、网络设备,软件包括但不限于进行任务调度的基础软件、"灵魂所在"的算法模块以及"基础设施"高精度地图。当前公众意义认为的自动驾驶主要指:车上安装的传感器 + 自动驾驶算法。算法模块可以分为大感知(包括融合与预测)、定位、规划与决策、控制几个模块。本文对于以上几个模块总结了一些问题,并给出一些思考。1. 感知感知模块占据了算法模块接近70%的代码,是自动驾驶系统中基本的、重要的、庞
2024-06-01 00:35:22 3406
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人