本科欠下的债 该!--概率论

概率预备知识

先验概率:统计概率,观测值
后验概率:条件概率,有特殊原因下的结果的概率
后验概率 P ( y ∣ x ) P(y|x) P(yx)=先验概率 P ( y ) P(y) P(y) * 极大似然估计 P ( x ∣ y ) P(x|y) P(xy)

条件概率:满足A条件下,B发生的概率为 P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)={P(AB) \over P(A)} P(BA)=P(A)P(AB),其中 P ( A B ) P(AB) P(AB)为满足A且满足B的概率。

  • 期望
    (1) X X X为离散型随机变量,分布律为 P { X = x k } = p x , k = 1 , 2... P\{X=x_k\}=p_x,k=1,2... P{X=xk}=px,k=1,2...,如果 ∑ k = 1 ∞ x k p k \sum^\infty_{k=1}x_kp_k k=1xkpk绝对收敛,则称它为 X X X的数学期望或者均值,记作 E ( X ) E(X) E(X),即 E ( X ) = ∑ k = 1 ∞ x k p k E(X)=\sum^\infty_{k=1}x_kp_k E(X)=k=1xkpk,若其发散,则期望不存在
    (2) X X X为连续型随机变量,其密度函数为 f ( x ) f(x) f(x),如果 ∫ − ∞ ∞ ∣ x ∣ f ( x ) d x \int^\infty_{-\infty}|x|f(x)dx xf(x)dx有限,则 X X X的数学期望为 E ( X ) = ∫ − ∞ ∞ x f ( x ) d x E(X)=\int^\infty_{-\infty}xf(x)dx E(X)=xf(x)dx,如果无限,则期望不存在。
    – 如果 X 、 Y X、Y XY独立,则 E ( X Y ) = E ( X ) E ( Y ) E(XY)=E(X)E(Y) E(XY)=E(X)E(Y)

  • 方差 D ( X ) = E [ X − E ( X ) ] 2 D(X)=E[X-E(X)]^2 D(X)=E[XE(X)]2
    标准差(均方差): σ ( X ) \sigma (X) σ(X),为 D ( X ) D(X) D(X)的算术平方根,

  • 全概率公式:分解为小事件,算小事件的概率和
    A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An是一个完备事件组,且 P ( A i ) ≠ 0 , 则 ∀ B ⊂ Ω , 有 P ( B ) = ∑ i = 1 n P ( B ∣ A i ) P ( A i ) P(A_i) \not=0,则\forall B \subset \Omega ,有P(B)=\sum^n_{i=1}{P(B|A_i)P(A_i)} P(Ai)=0BΩP(B)=i=1nP(BAi)P(Ai)

  • 贝叶斯公式:全概率下的条件概率,两个事件共同发生的概率有两种通过条件概率的求法
    P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B)={P(B|A)P(A) \over P(B)} P(AB)=P(B)P(BA)P(A)

  • 贝努利试验:实验结果非二分类,试验 E E E间独立,进行n次独立试验称作n重贝努利实验,记作 E n E^n En,如射击中靶
    若事件A是试验 E E E的事件,且 P ( A ) = p P(A)=p P(A)=p,独立重复进行n次 E E E,则A恰好发生k次的概率为 P ( A k ) = C n k p k ( 1 − p ) n − k P(A^k)=C^k_np^k(1-p)^{n-k} P(Ak)=Cnkpk(1p)nk

  • 离散随机变量概率分布 X 的 取 值 范 围 为 R X = { x 1 , x 2 , . . . , x n } X的取值范围为R_X=\{x_1,x_2,...,x_n \} XRX={x1,x2,...,xn}
    其分布列为

X X X x 1 x_1 x1 x 2 x_2 x2 x n x_n xn
P P P p 1 p_1 p1 p 2 p_2 p2 p n p_n pn

分布律为 P { X = x i } = p i , i = 1 , 2 , . . . , n P\{ X=x_i\}=p_i,i=1,2,...,n P{X=xi}=pii=1,2,...,n

  • 常见离散分布
    (1)0-1分布,记作 B ( 1 , p ) , 0 < p < 1 B(1,p),0<p<1 B(1,p),0<p<1,如一次射击,中的概率p为0.3,记作 B ( 1 , 0.3 ) B(1,0.3) B(1,0.3)
    期望 E ( X ) = p E(X)=p E(X)=p
    方差 D ( X ) = p ( 1 − p ) D(X)=p(1-p) D(X)=p(1p)
    (2)几何分布,记作 G ( p ) , 0 < p < 1 G(p),0<p<1 G(p),0<p<1,如一个人射击单次命中概率为p,随机变量 X X X为第一次命中的次数,则记作 X ∼ G ( p ) X \sim G(p) XG(p)
    期望 E ( X ) = 1 p E(X)={1\over p} E(X)=p1
    (3)泊松分布,记作 P ( λ ) , λ > 0 P(\lambda),\lambda>0 P(λ),λ>0,成为参数为 λ \lambda λ的泊松分布。 P { x = k } = e − k λ k k ! , k = 0 , 1 , 2... P\{ x=k\}={e^{-k}\lambda^k\over{k!}},k=0,1,2... P{x=k}=k!ekλk,k=0,1,2...
    期望 E ( X ) = λ E(X)=\lambda E(X)=λ
    方差: D ( X ) = λ D(X)=\lambda D(X)=λ
    (4)二项分布,记作 B ( n , p ) , n ∈ N , 0 < p < 1 B(n,p),n\in N,0<p<1 B(n,p),nN,0<p<1,称为参数为 n , p n,p n,p的二项分布。
    如一个人射击了 n n n次,单次命中概率为 p p p,其命中 k k k次为随机变量,则有 X ∼ B ( n , p ) X\sim B(n,p) XB(n,p),则其命中 k k k次的概率为 P { x = k } = C n k P k ( 1 − p ) n − k , k = 0 , 1 , 2... n P\{x=k\}=C^k_nP^k(1-p)^{n-k},k=0,1,2...n P{x=k}=CnkPk(1p)nk,k=0,1,2...n
    期望 E ( X ) = n p E(X)=np E(X)=np
    方差 D ( X ) = n p ( 1 − p ) D(X)=np(1-p) D(X)=np(1p)

  • 随机变量的分布函数
    X X X为随机变量,函数 F ( x ) = P { X ≤ x } ; x ∈ R F(x)=P\{ X \leq x\};x\in R F(x)=P{Xx};xR,称为 X X X的分布函数,记作 F X ( x ) F_X(x) FX(x)

  • 离散随机变量的分布列与分布函数
    若离散随机变量 X X X的概率分布为 P { X = x i } = p i , i = 1 , 2 , . . . , n P\{X=x_i\}=p_i,i=1,2,...,n P{X=xi}=pi,i=1,2,...,n,设 x 1 < x 2 < . . . < x n x_1<x_2<...<x_n x1<x2<...<xn,则随机变量 X X X的分布函数为
    F ( x ) = { 0 x < x 1 . . . p 1 + p 2 + . . . + p k x k ≤ x < x k + 1 . . . 1 x ≥ x n F(x)=\left\{ \begin{aligned} 0 & &{x<x_1} \\ ... &&{} \\ p_1+p_2+...+p_k & & {x_k\leq x<x_{k+1}}\\ ... && {}\\ 1 && {x \geq x_n} \end{aligned} \right. F(x)=0...p1+p2+...+pk...1x<x1xkx<xk+1xxn

  • 连续型随机变量及其密度
    X X X为随机变量,若存在函数 f ( x ) f(x) f(x),有 ∀ x ∈ R , f ( x ) ≥ 0 \forall x \in R,f(x)\geq0 xR,f(x)0,并使得 X X X的分布函数满足 F X ( x ) = P { X ≤ x } = ∫ − ∞ x f ( t ) d t F_X(x)=P\{X \leq x\}=\int^x_{-\infty}f(t)dt FX(x)=P{Xx}=xf(t)dt,则称随机变量 X X X为连续型随机变量,成函数 f ( x ) f(x) f(x) X X X的概率密度(分布密度)

  • 常见连续分布
    (1)均匀分布(记作 U [ a , b ] ; a < b U[a,b];a<b U[a,b];a<b称作[a,b]上的均匀分布)
    密度 f ( x ) = { 1 b − a a ≤ x ≤ b 0 其他 f(x)=\begin{cases}1\over{b-a}& a \leq x \leq b\\0&\text{其他}\end{cases} f(x)={ba10axb其他,分布函数 f ( x ) = { 1 x ≥ b x − a b − a a ≤ x < b 0 x < a f(x)=\begin{cases}1& x \geq b\\{x-a}\over{b-a}& a \leq x < b\\0&x<a\end{cases} f(x)=1baxa0xbax<bx<a
    期望 E ( X ) = a + b 2 E(X)={a+b\over2} E(X)=2a+b
    方差 D ( X ) = ( b − a ) 2 12 D(X)={{(b-a)^2}\over{12}} D(X)=12(ba)2
    (2)指数分布,记作 e ( λ ) , λ > 0 e(\lambda),\lambda>0 e(λ),λ>0,称作参数为 λ \lambda λ的指数分布
    密度 f ( x ) = { λ e − λ x x ≥ 0 0 x < 0 f(x)=\begin{cases}\lambda e^{-\lambda x}& x\geq 0\\0&x<0\end{cases} f(x)={λeλx0x0x<0,分布函数 f ( x ) = { 1 − e − λ x x ≥ 0 0 x < 0 f(x)=\begin{cases}1-e^{-\lambda x} & x\geq 0\\0&x<0\end{cases} f(x)={1eλx0x0x<0
    期望 E ( X ) = λ E(X)=\lambda E(X)=λ
    方差 D ( X ) = λ 2 D(X)=\lambda^2 D(X)=λ2
    (3)正态分布,记作 N ( μ , σ 2 ) , μ ∈ R , σ > 0 N(\mu ,\sigma^2),\mu \in R,\sigma > 0 N(μ,σ2),μR,σ>0,称作参数为 μ , σ 的 正 态 分 布 \mu ,\sigma的正态分布 μ,σ
    密度: f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x)={1\over{\sqrt{2\pi} \sigma}}e^{-{(x-\mu)^2}\over{2\sigma^2}} f(x)=2π σ1e2σ2(xμ)2,分布函数求不出
    期望 E ( X ) = μ E(X)=\mu E(X)=μ
    方差 D ( X ) = σ 2 D(X)=\sigma^2 D(X)=σ2

  • 参数估计
    1)点估计法:
    (1)矩估计法
    (2)极大似然估计:有结果的条件下,求原因的概率
    2)区间估计
    极大似然估计:似然函数为产生该样本的概率,通过产生每个样本的概率乘积来算,让似然函数产生最大值的参数为所求。
    例:罐子中两种棋子比例为3:2,从罐子中取出4个棋子,观察结果为白、黑、白、白,请估计取到白子的概率p?
    X X X为随机变量,即 X = { 1 取 到 白 子 0 取 到 黑 子 X=\begin{cases}1& 取到白子\\0&取到黑子\end{cases} X={10,则 X ∼ B ( 1 , p ) , p X\sim B(1,p),p XB(1,p),p为每次取到白子的概率, = 0.6 或 0.4 =0.6或0.4 =0.60.4,重复四次试验,样本值为 x 1 = 1 , x 2 = 0 , x 3 = 1 , x 4 = 1. x_1=1,x_2=0,x_3=1,x_4=1. x1=1,x2=0,x3=1,x4=1.
    L ( θ ) = P { X 1 = x 1 , X 2 = x 2 , . . . X n = x n } = Π i = 1 n p ( x , θ ) L(\theta)=P\{X_1=x_1,X_2=x_2,...X_n=x_n\}=\Pi^n_{i=1}p(x,\theta) L(θ)=P{X1=x1,X2=x2,...Xn=xn}=Πi=1np(x,θ)为似然函数。
    θ ^ x 使 得 L \hat{\theta}_x使得L θ^x使L取最大值,则 θ ^ x \hat{\theta}_x θ^x为最大似然估计值, θ ^ X \hat{\theta}_X θ^X为最大似然估计量。
    step1由总体分布导出样本的联合分布律或联合密度
    step2把样本联合分布律中的自变量看成一直常数,把参数看做自变量,得到似然函数 L ( θ ) L(\theta) L(θ)
    step3求似然函数的最大值点,常常转化为求 l n L ( θ ) lnL(\theta) lnL(θ)的最大值点,
    step4写出极大似然估计量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值