多智能体强化学习问题的典型例子

一、多智能体强化学习问题的主要难点

        多智能体的强化学习问题是一个具有挑战性的领域,面临着以下主要问题:

        (1)环境非平稳性:在多智能体系统中,每个智能体的策略在不断更新,导致系统中的每个智能体所处的环境都是不平稳的。这破坏了将系统建模为马尔可夫过程中的条件,使得独立训练每个智能体的方法在复杂的场景下可能难以收敛。

        (2)维度爆炸:如果将整个多智能体系统看作一个整体,进行集中学习,包括集中学习环境状态、所有智能体动作之间的映射,虽然消除了环境不平稳的问题,但随之带来了状态、动作空间的维度爆炸,尤其是当智能体数量增加时,可能导致智能体没法学到策略,扩展性太差。

        (3)信度分配:一个智能体的奖励不仅由其自身的行为决定,还可能受到其他智能体行为的影响,因此在多智能体系统中,信度分配成为一个重要问题。

        为解决这些问题,研究者们提出了一些多智能体强化学习算法,如QMIX、VDN等,这些算法结合了完全独立学习和完全集中学习的优点。此外,还有一些研究者提出了采用集中训练、分散执行的框架,训练时允许策略适用额外的信息,这些信息在测试时不会被用到。训练完成后,分散执行,智能体仅使用自身的信息。这种方法适用于合作和竞争的环境。

二、多智能体强化学习的典型例子

        多智能体强化学习的典型的例子包括:

        (1)两个智能体将金条搬运回家的例子。在这里,我们称两个智能体为小红和小蓝。

        (2)道路驾驶的例子。假设你开车行驶在高速上,那么你不仅仅需要控制车辆使自身保持在车道线内,也需要和同车道上的其他车辆形成合作的关系。例如,如果前车减速,那么你也要相应地减速以保持一百米的安全车距;与此同时,前车也要防止急刹车一类的动作,从而防止后车追尾。

        以前者为例,我们可以梳理下其算法流程。多智能体强化学习可以应用于解决两个智能体将金条搬运回家的问题,在这个问题中,可以定义两个智能体分别为Actor1和Actor2,它们需要通过合作来搬运金条。

        首先,Actor1和Actor2都需要根据当前的状态来选择合适的动作。在这个过程中,可以使用基于策略的方法来进行学习,例如使用DDPG算法来训练Actor1和Actor2。

        在训练过程中,Actor1和Actor2会根据当前的状态和自身的历史来选择动作,并通过与环境的交互来获得奖励或惩罚。这些奖励或惩罚可以用来更新Actor1和Actor2的策略,以便在未来的决策中做出更好的选择。

        通过不断地训练和迭代,Actor1和Actor2会逐渐学会如何合作来搬运金条。例如,Actor1可能会学会在某些状态下采取特定的动作来帮助Actor2搬运金条,而Actor2也会学会根据自身的历史信息和Actor1的动作来选择合适的动作来回应。

        最终,经过足够的训练后,Actor1和Actor2就可以通过合作来成功地将金条搬运回家。

        需要注意的是,这只是一个简单的例子,实际应用中可能还需要考虑其他因素,例如通信延迟、不完美的信息共享、非完全理性的行为等。为了解决这些问题,需要设计更加复杂的算法和技术。

三、DDPG算法

        DDPG(Deep Deterministic Policy Gradient)是一种基于Actor-Critic架构的深度强化学习算法。它主要用于解决连续动作空间的强化学习问题。

        DDPG算法主要由两部分组成:Actor网络和Critic网络。Actor网络负责生成动作,它通过学习状态到动作的映射来生成动作。Critic网络则用于估计动作值函数,即给定状态和动作的情况下,预测未来的奖励。

        DDPG算法的核心思想是使用一个神经网络来逼近Q函数,并通过梯度上升的方法来更新网络参数。具体来说,DDPG算法通过以下步骤进行训练:

        初始化Actor网络和Critic网络。

        对于每个训练步骤:

a. 从环境中采样一批状态-动作对。

b. 使用Actor网络生成动作。

c. 使用Critic网络计算当前状态和动作的Q值。

d. 计算损失函数,它是由当前状态和动作的Q值与目标Q值之间的差异组成的。

e. 使用梯度下降的方法更新Critic网络的参数。

f. 使用Actor网络生成一批新的动作,并计算它们的Q值。

g. 计算新的损失函数,它是由新动作的Q值与目标Q值之间的差异组成的。

h. 使用梯度上升的方法更新Actor网络的参数。

        重复步骤2直到收敛或达到最大训练步骤数。

        DDPG算法具有较好的稳定性和收敛速度,适用于解决连续动作空间的强化学习问题。

        DDPG算法可以用于解决多智能体的问题。实际上,MADDPG(Multi-Agent Deep Deterministic Policy Gradient)算法就是DDPG算法在多智能体环境中的扩展。

        MADDPG算法为每个智能体定义了独立的Actor网络和Critic网络,并且每个智能体都有自己独立的回报函数。这种方式使得MADDPG算法可以同时解决协作、竞争以及混合环境下的多智能体问题。在训练时,每个智能体都能获取到其余所有智能体的局部观察以及动作,这是通过中心化方式进行训练,分布式执行方式实现的。

        因此,DDPG可以用于解决多智能体的问题,而MADDPG是在此基础上的扩展应用。以下是一个使用DDPG解决两个智能体将金条搬运回家问题的伪代码示例:

# 定义状态、动作和奖励 

state = [金条位置, 智能体1位置, 智能体2位置, 相对距离] 

action = [智能体1动作, 智能体2动作] 

reward = [搬运成功奖励, -1(失败惩罚)] 

# 初始化Actor网络和Critic网络 

Actor1 = DenseNet(state, action1) 

Actor2 = DenseNet(state, action2) 

Critic1 = DenseNet(state, action1, reward) 

Critic2 = DenseNet(state, action2, reward) 

 # 训练过程 

for episode in range(max_episodes): 

    初始化状态state 

    while state != terminal: 

        # 选择动作 

        action1 = Actor1.predict(state) 

        action2 = Actor2.predict(state) 

        # 与环境交互,获取下一个状态和奖励 

        next_state, reward = env.step([action1, action2]) 

        # 更新Critic网络 

        Q1 = Critic1.predict([state, action1]) 

        Q2 = Critic2.predict([state, action2]) 

        target_Q = reward + gamma * min(Q1, Q2)  # 使用min是为了简化代码,实际应用中需要根据具体情况调整 

        Critic1.fit(state, action1, target_Q)  # 更新Critic1网络参数 

        Critic2.fit(state, action2, target_Q)  # 更新Critic2网络参数 

        # 更新Actor网络 

        next_action1 = Actor1.predict(next_state) 

        next_action2 = Actor2.predict(next_state) 

        target_Q = reward + gamma * max(Critic2.predict([next_state, next_action2]), Critic1.predict([next_state, next_action1]))  # 使用max也是为了简化代码,实际应用中需要根据具体情况调整 

        Actor1.fit(state, action1, target_Q)  # 更新Actor1网络参数 

        Actor2.fit(state, action2, target_Q)  # 更新Actor2网络参数 

        state = next_state  # 更新状态 

    print("Episode ", episode, " finished")

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
多智能体强化学习已经在许多领域得到应用。一个典型的案例是多智能体博弈中的AlphaGo。AlphaGo是谷歌DeepMind开发的一个能够下围棋的AI系统。该系统使用了深度强化学习的方法,通过与自己对弈来训练,最终取得了在围棋比赛中战胜人类职业棋手的成就。在AlphaGo中,每个智能体都是一个独立的神经网络,通过强化学习来学习下棋的最佳策略。这个案例展示了多智能体强化学习在游戏AI领域的应用。 另一个案例是多智能体强化学习在智能交通系统中的应用。智能交通系统涉及到多个智能体,如车辆、行人和交通信号灯等。通过使用多智能体强化学习,可以实现交通系统的优化调度和流量控制。智能交通系统中的每个智能体可以根据当前的交通状况和自身的目标,选择最佳行动来避免交通拥堵和事故的发生。这种方法可以提高交通效率,减少交通延误和碰撞风险。 此外,多智能体强化学习还可以应用于机器人协作和分布式控制。在机器人协作中,多个机器人可以通过强化学习来学习如何协调行动,实现复杂任务的分工合作。在分布式控制中,多个智能体可以通过强化学习来学习如何在分布式系统中协同工作,实现更高效的控制和决策。这些案例都展示了多智能体强化学习在实际问题中的应用和潜力。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [多智能体强化学习及其在游戏AI上的应用与展望](https://blog.csdn.net/wangchewen/article/details/120904996)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [一个简单易懂的多智能体强化学习建模过程的例子](https://blog.csdn.net/u010442908/article/details/106747533)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Older司机渣渣威

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值