【QMIX】一种基于Value-Based多智能体算法

QMIX 是一种基于 Value-Based 的多智能体强化学习算法(MARL),其基本思想来源于 Actor-Critic 与 DQN 的结合。使用中心式学习(Centralized Learning)分布式执行(Distributed Execution)的方法,利用中心式 Critic 网络接受全局状态用于指导 Actor 进行更新。QMIX 中 Critic 网络的更新方式和 DQN 相似,使用 TD-Error 进行网络自更新。除此之外,QMIX 中为 Critic 网络设立了 evaluate net 和 target net, 这和 DQN 中的设计思想完全相符。

1. QMIX 解决了什么问题(Motivation)

QMIX 是一种解决多智能体强化学习问题的算法,对于大多数多智能体强化学习问题(MARL)都面临着同样一个问题:信度分配(也叫回报分配)

这是指,当多个 Agent 在同时执行任务时,我们应该怎样合理的去评价每一个 Agent 的行为效用,举个例子:

假设我们现在正在训练一个算法模型,使用该算法模型去玩 MOBA 类游戏(DOTA 或者 LOL),算法模型需要同时操控 5 个英雄。在训练过程中遇到了这样一个情况:我方 3 个英雄迎面撞上了敌方 1 个英雄。此时,算法模型控制 1 号英雄和 2 号英雄对敌方英雄发起进攻,但却让 3 号英雄撤退。那么最终,因为 2 打 1 的局面,我方成功击败对方英雄,获得了 10 分的奖励分(Reward),那么我们该怎样为我方的这 3 个英雄进行奖励分配?

在上面案例中,我们很明显能看出,在人数占优势的情况下,算法选择让 1 号和 2 号英雄一起发起进攻是一次正确的尝试,而让 3 号英雄尝试撤退显然就不那么明智了。由于对 1 号和 2 号的正确决策,使得整个指挥策略得到了正向的奖励分(Positive Reward),但显然我们不能直接将这个正向奖励分同时应用到这 3 个英雄上。

我们希望被正确决策的英雄(1 号和 2 号)获得较高的奖励分,而被错误决策的英雄(3 号)获得负的惩罚分,即最后的期望得分可能为:1 号(8分),2 号(8分),3 号(-6分)。

三个英雄的得分总和加起来还是 10 分,只是每个英雄能够按照自己的实际情况获得对应的合理奖励分。

这就是 回报分配 的概念。

回报分配通常分为两种类型: 自下而上类型 和 自上而下类型。

  • 自上而下类型:这种类型通常指我们只能拿到一个团队的最终得分,而无法获得每一个 Agent 的独立得分,因此我们需要把团队回报(Team Reward)合理的分配给每一个独立的 Agent(Individual Reward),这个过程通常也叫 “独立回报分配”(Individual Reward Assign)。上述例子就属于这种类型,典型的代表算法为 COMA算法

  • 自下而上类型:另外一种类型恰恰相反,指当我们只能获得每个 Agent 的独立回报(Individual)时,如何使得整个团队的团队得分(Team Reward)最大化。

QMIX 算法解决的是上述第二种类型的问题,即,在获得各 Agent 的独立回报的情况下,如何使得整个团队的团队收益最大化问题


2. QMIX 怎样解决团队收益最大化问题(Method)

2.1 算法大框架 —— 基于 AC 框架的 CTDE(Centralized Training Distributed Execution) 模式

多智能体强化学习(MARL)训练中面临的最大问题是:训练阶段和执行阶段获取的信息可能存在不对等问题。即,在训练的时候我们可以获得大量的全局信息(事实证明,只有获取足够的信息模型才能被有效训练)。

但在最终应用模型的时候,我们是无法获取到训练时那么多的全局信息的,因此,人们提出两个训练网络:一个为中心式训练网络(Critic),该网络只在训练阶段存在,获取全局信息作为输入并指导 Agent 行为控制网络(Actor)进行更新;另一个为行为控制网络(Actor),该网络也是最终被应用的网络,在训练和应用阶段都保持着相同的数据输入。

AC 算法的应用非常广泛,QMIX 在设计时同样借鉴了 AC 的 “中心式网络” 和 “分布式执行器” 的想法,整个网络包含了 Mixing Network(类比 Critic 网络)和 Agent RNN Network(类比 Actor 网络),整个网络架构图如下所示:

下面我们分别来看看 Mixing Network 和 RNN Network 的详细设计。

2.2 Agent RNN Network

QMIX 中每一个 Agent 都由 RNN 网络控制,在训练时你可以为每一个 Agent 个体都训练一个独立的 RNN 网络,同样也可以所有 Agent 复用同一个 RNN 网络,这取决于你自己的设计。

RNN 网络一共包含 3 层,输入层(MLP)→ 中间层(GRU)→ 输出层(MLP),实现代码如下:

class RNN(nn.Module):

    # 所有 Agent 共享同一网络, 因此 input_shape = obs_shape + n_actions + n_agents(one_hot_code)
    def __init__(self, input_shape, args):
        super().__init__()

        self.fc1 = nn.Linear(input_shape, args.rnn_hidden_dim)
        self.rnn = nn.GRUCell(args.rnn_hidden_dim, args.rnn_hidden_dim)     # GRUCell(input_size, hidden_size)
        self.fc2 = nn.Linear(args.rnn_hidden_dim, args.n_actions)

    def forward(self, obs, hidden_state):
        x = F.relu(self.fc1(obs))
        h_in = hidden_state.reshape(-1, self.args.rnn_hidden_dim)
        h = self.rnn(x, h_in)                # GRUCell 的输入要求(current_input, last_hidden_state)
        q = self.fc2(h)                      # h 是这一时刻的隐状态,用于输到下一时刻的RNN网络中去,q 是真实行为Q值输出
        return q, h
2.3 Mixing Network

Mixing 网络相当于 Critic 网络,同时接收 Agent RNN Network 的 Q 值和当前全局状态 s t s_t st ,输出在当前状态下所有 Agent 联合行为 u u u 的行为效用值 Q t o t Q_{tot} Qtot

Mixing 同样使用神经网络结构,不同的是,上图中蓝色部分(中间层神经元)的权重(weights)和偏差(bias)均由右边红色的神经网络产生。即,Mixing 网络中实际包含两个神经网络,红色参数生成网络 & 蓝色推理网络。

  • 参数生成网络: 接收全局状态 s t s_t st,生成蓝色网络中的神经元权重(weights)和偏差(bias)。
  • 推理网络:接收所有 Agent 的行为效用值 Q Q Q,并将参数生成网络生成的权重和偏差赋值到网络自身,从而推理出全局效用 Q t o t Q_{tot} Qtot

下图是推理网络示意图,只含有一个隐层,与隐层相连接的 weights 和 bias 均由参数生成网络生成,每一层需要的 weights 和 bias 维度如下图所示:

结合上图,我们来看看 Mixing 网络实现代码:

class QMixNet(nn.Module):
    
    def __init__(self, arglist):
        super().__init__()
        self.arglist = arglist

        # 因为生成的 hyper_w1 需要是一个矩阵,而 pytorch 神经网络只能输出一个向量,
        # 所以就先输出长度为需要的 矩阵行*矩阵列 的向量,然后再转化成矩阵

        # hyper_w1 网络用于输出推理网络中的第一层神经元所需的 weights,
        # 推理网络第一层需要 qmix_hidden * n_agents 个偏差值,因此 hyper_w1 网络输出维度为 qmix_hidden * n_agents
        self.hyper_w1 = nn.Sequential(nn.Linear(arglist.state_shape, arglist.hyper_hidden_dim),
                                      nn.ReLU(),
                                      nn.Linear(arglist.hyper_hidden_dim, arglist.n_agents * arglist.qmix_hidden_dim))
            
        # hyper_w2 生成推理网络需要的从隐层到输出 Q 值的所有 weights,共 qmix_hidden 个
        self.hyper_w2 = nn.Sequential(nn.Linear(arglist.state_shape, arglist.hyper_hidden_dim),
                                      nn.ReLU(),
                                      nn.Linear(arglist.hyper_hidden_dim, arglist.qmix_hidden_dim))

        # hyper_b1 生成第一层网络对应维度的偏差 bias
        self.hyper_b1 = nn.Linear(arglist.state_shape, arglist.qmix_hidden_dim)
        # hyper_b2 生成对应从隐层到输出 Q 值层的 bias
        self.hyper_b2 =nn.Sequential(nn.Linear(arglist.state_shape, arglist.qmix_hidden_dim),
                                     nn.ReLU(),
                                     nn.Linear(arglist.qmix_hidden_dim, 1)
                                     )

    def forward(self, q_values, states):  # states的shape为(episode_num, max_episode_len, state_shape)
        # 传入的q_values是三维的,shape为(episode_num, max_episode_len, n_agents)
        episode_num = q_values.size(0)
        q_values = q_values.view(-1, 1, self.arglist.n_agents)  # (episode_num * max_episode_len, 1, n_agents)
        states = states.reshape(-1, self.arglist.state_shape)  # (episode_num * max_episode_len, state_shape)

        w1 = torch.abs(self.hyper_w1(states))
        b1 = self.hyper_b1(states)

        w1 = w1.view(-1, self.arglist.n_agents, self.arglist.qmix_hidden_dim)
        b1 = b1.view(-1, 1, self.arglist.qmix_hidden_dim)

        hidden = F.elu(torch.bmm(q_values, w1) + b1)	# torch.bmm(a, b) 计算矩阵 a 和矩阵 b 相乘

        w2 = torch.abs(self.hyper_w2(states))
        b2 = self.hyper_b2(states)

        w2 = w2.view(-1, self.arglist.qmix_hidden_dim, 1)
        b2 = b2.view(-1, 1, 1)

        q_total = torch.bmm(hidden, w2) + b2
        q_total = q_total.view(episode_num, -1, 1)
        return q_total
2.4 模型更新流程

至此,我们已经了解了 QMIX 中主要网络的结构了,现在我们来看看训练过程中这些神经网络是如何进行参数更新的吧。

QMIX 的更新方式和 DQN 非常类似,设定 evaluate Net 和 target Net,并利用 TD-Error 完成参数更新:

l o s s = T D E r r o r = Q t o t ( e v a l u t a t e ) − ( r + γ Q t o t ( t a r g e t ) ) loss = TDError = Q_{tot}(evalutate) - (r + \gamma Q_{tot}(target)) loss=TDError=Qtot(evalutate)(r+γQtot(target))

由上述公式可以看出,一共存在两个 Mixing 网络(evaluate & target),两个网络分别用于产生 Q t o t ( e v a l u a t e ) Q_{tot}(evaluate) Qtot(evaluate) Q t o t ( t a r g e t ) Q_{tot}(target) Qtot(target),两个网络接收不同的输入:

  • eval 网络: 接收在状态 s s s 下每个 Agent RNN Network 所选行为的 Q Q Q作为输入,输出 Q t o t ( e v a l u a t e ) Q_{tot}(evaluate) Qtot(evaluate)
  • target 网络:接收在状态 s n e x t s_{next} snext 下每个 Agent RNN Network 所有行为中最大的 Q Q Q作为输入,输出 Q t o t ( t a r g e t ) Q_{tot}(target) Qtot(target)

实现代码如下:

    def learn(self, batch):
    
        episode_num = batch['o'].shape[0]
        self.init_hidden(episode_num)

        # 把 batch 里的数据转化成 tensor
        for key in batch.keys():
            if key == 'u':
                batch[key] = torch.tensor(batch[key], dtype=torch.long)
            else:
                batch[key] = torch.tensor(batch[key], dtype=torch.float32)

        s, s_next, u, r, avail_u, avail_u_next, terminated = batch['s'], batch['s_next'], batch['u'], \
                                                             batch['r'],  batch['avail_u'], batch['avail_u_next'],\
                                                             batch['terminated']

        # 得到每个 agent 对应的 Q 值列表
        q_evals, q_targets = self.get_q_values(batch)

        # 取出每个 agent 所选择动作的对应 Q 值
        q_evals = torch.gather(q_evals, dim=3, index=u).squeeze(3)

        # 得到target_q,取所有行为中最大的 Q 值
        q_targets[avail_u_next == 0.0] = - 9999999      # 如果该行为不可选,则把该行为的Q值设为极小值,保证不会被选到
        q_targets = q_targets.max(dim=3)[0]

        # qmix更新过程,evaluate网络输入的是每个agent选出来的行为的q值,target网络输入的是每个agent最大的q值,和DQN更新方式一样
        q_total_eval = self.eval_qmix_net(q_evals, s)
        q_total_target = self.target_qmix_net(q_targets, s_next)

        targets = r + self.arglist.gamma * q_total_target * (1 - terminated)

        td_error = (q_total_eval - targets.detach())

        # 不能直接用mean,因为还有许多经验是没用的,所以要求和再比真实的经验数,才是真正的均值
        loss = (masked_td_error ** 2).sum() / mask.sum()
        self.optimizer.zero_grad()
        loss.backward()
        torch.nn.utils.clip_grad_norm_(self.eval_parameters, self.arglist.grad_norm_clip)
        self.optimizer.step()

		# 在指定周期更新 target network 的参数
        if train_step > 0 and train_step % self.arglist.target_update_cycle == 0:
            self.target_rnn.load_state_dict(self.eval_rnn.state_dict())
            self.target_qmix_net.load_state_dict(self.eval_qmix_net.state_dict())

3. QMIX 效果

下图是 QMIX 论文中给出的 QMIX 与其他算法之间的效果对比图:

可以看出,QMIX 相较于 IQL 有明显大幅度的提升,并且比 VDN 具有更优的效果。QMIX 实质上是 VDN 的一个改进版本,在 VDN 中直接将每个 Agent 的 Q Q Q 值相加得到 Q t o t Q_{tot} Qtot,而在 QMIX 中,利用两个神经网络,结合每个 Agent 的 Q Q Q 值与全局状态 s t s_t st 共同推理出全局效用 Q t o t Q_{tot} Qtot,从结果来看确实比 VDN 在效果上有一定的提升。



QMIX 论文链接: https://arxiv.org/pdf/1803.11485.pdf
QMIX 实现代码:https://github.com/oxwhirl/smac

  • 15
    点赞
  • 60
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
抱歉,我是一名语言模型AI,不具备生成代码的能力。但可以提供一些Q-learning和多智能体强化学习方面的概念和算法示例。 Q-learning是一种强化学习算法,用于训练智能体在不知道环境模型的情况下进行决策,该算法通过更新一个Q值函数来优化智能体的策略。Q值表示在某个状态下采取某个动作所能获得的期望奖励,Q值函数通过采取一系列随机动作并观察奖励值从而进行学习更新。 多智能体强化学习是指多个智能体同时在共享环境下进行学习和交互的一种学习方法。在多智能体学习中,智能体需要考虑其他智能体的行为对其决策的影响,可以基于Q-learning等算法进行训练。 一个基于Q-learning的多智能体强化学习算法的python示例可以参考如下代码: ```python import random import numpy as np class QLearning: def __init__(self, actions, alpha=0.1, gamma=0.9, epsilon=0.1): self.actions = actions self.alpha = alpha self.gamma = gamma self.epsilon = epsilon self.q_table = {} def get_q_value(self, state, action): if state not in self.q_table: self.q_table[state] = np.zeros(len(self.actions)) return self.q_table[state][action] def choose_action(self, state): if np.random.uniform() > self.epsilon: action = np.argmax(self.q_table[state]) else: action = np.random.choice(self.actions) return action def update(self, state, action, reward, next_state): q_value = self.get_q_value(state, action) next_q_value = self.get_q_value(next_state, np.argmax(self.q_table[next_state])) td_error = reward + self.gamma * next_q_value - q_value self.q_table[state][action] += self.alpha * td_error class Agent: def __init__(self, actions): self.actions = actions self.q_learning = QLearning(self.actions) def act(self, state): return self.q_learning.choose_action(str(state)) def learn(self, state, action, reward, next_state): self.q_learning.update(str(state), action, reward, str(next_state)) class Environment: def __init__(self, agents, num_steps=1000): self.agents = agents self.num_steps = num_steps def step(self, state): actions = [agent.act(state) for agent in self.agents] next_state, reward = simulate_environment(state, actions) for i, agent in enumerate(self.agents): agent.learn(state, actions[i], reward[i], next_state) return next_state, reward def run(self, state): for i in range(self.num_steps): state, reward = self.step(state) print(f"Step {i}: State {state} has reward {reward}") def simulate_environment(state, actions): next_state = [state[i] + actions[i] for i in range(len(actions))] reward = [calculate_reward(next_state[i]) for i in range(len(actions))] return next_state, reward def calculate_reward(state): # calculate reward pass if __name__ == "__main__": # define environment and agents env = Environment([Agent([0, 1]), Agent([0, -1])]) # run environment env.run([0, 0]) ``` 上述代码中,QLearning类是一个通用的Q-learning算法实现,Agent类是智能体的实现,Environment类是多智能体环境的实现。在run方法中,循环执行step方法,并输出状态和奖励值。simulate_environment函数用于模拟环境,calculate_reward函数用于计算奖励。代码中的环境为一个棋盘,两个智能体在该棋盘上进行学习。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值